
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Rory How

Measuring Political Bias in British Me-
dia:
Using Recurrent Neural Networks for Long
Form Textual Analysis

Master’s Thesis
Espoo, 24th May 2020

Supervisor: Professor Aristedes Gionis, Aalto University
Advisor: Daryl Weir Ph.D.

Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Rory How

Title:
Measuring Political Bias in British Media: Using Recurrent Neural Networks for
Long Form Textual Analysis

Date: 24th May 2020 Pages: 80

Major: Computer Science Code: SCI3042

Supervisor: Professor Aristides Gionis

Advisor: Daryl Weir Ph.D.

In this thesis we aim to explore methods of determining political bias in the
traditional British print media. It can be shown that much of the British public
perceive there to be explicit political biases in many of the UK’s most popular
media outlets. It is also known that people are inherently prone to political
influence from their sources of news. Due to this reason, there is motivation to
seek a means to formalise political bias in British media outlets.

In our study, we took the 2016 UK referendum of EU membership as the source
to identify a political bias. We sought to find a means in which to determine on
a sentence level, whether a newspaper identified with a pro-leave or pro-remain
philosophy. For this, we used the newspapers explicit endorsements for a certain
referendum outcome that are provided by the newspapers themselves as a ground
truth.

Recurrent neural networks have been shown to be useful when working over data
of varying sizes, such as encoded textual data. Recurrent neural networks have
also been used to perform classification tasks over short form textual data in
the scope of determining political bias. However, little work has been done on
processing more long-form textual data for classification tasks within a political
bias domain. Here, we sought to determine if recurrent neural networks would
be a viable approach for solving this problem, compared to more traditional and
simple approaches, such as a Naive Bayes model.

In our study, we were able to determine that recurrent neural networks are suc-
cessfully able to determine a political bias in British media outlets. Our models
also indicated slight biases in supposedly unbiased outlets, such as the BBC.The
generated models were also able to transfer their learnings into new domains,
such as determining EU membership political bias in more recent news articles.
However, due to a lack of input data, and ground truths applied in a broad man-
ner, traditional methods such as the Naive Bayes were able to achieve similar
results to the recurrent neural networks, with much less compute power required.

Keywords: Politics, Bias, Media, Recurent Neural Networks, LSTM,
GRU

Language: English
2

Acknowledgements

I wish to thank my friends and family for constantly moaning at me about the
status of my education, and I’d also like to thank the British government and
population as a whole for giving me something worthwhile to write about.

Helsinki, 24th May 2020

Rory How

3

Abbreviations and Acronyms

ANN Artificial Neural Network
RNN Recurrent Neural Network
BiRNN Bidirectional Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
BiLSTM Bidirectional Long Short-Term Memory
BiGRU Bidirectional Gated Recurrent Unit
ReLU Rectified Linear Unit
SGD Stochastic Gradient Descent
EU European Union
UK United Kingdom of Great Britain and Northern Ire-

land

4

Contents

Abbreviations and Acronyms 4

1 Introduction 8
1.1 A Marriage of Media Bias and Machine Learning 8
1.2 Research Questions . 10
1.3 Structure of the Thesis . 10

1.3.1 Background . 10
1.3.1.1 Political Bias Background 10
1.3.1.2 Sequence Classification Background 11

1.3.2 Methods . 11
1.3.3 Environment & Implementation 11
1.3.4 Evaluation & Discussion 11
1.3.5 Conclusion . 11

2 Background 13
2.1 Background of Political Bias in British Media 13

2.1.1 Media in the United Kingdom 15
2.1.1.1 The BBC . 15

2.1.2 Types of Bias . 16
2.1.3 The 2016 European Union Referendum 17

2.2 Background of Corpus Classification 20
2.2.1 Naive Bayes . 20
2.2.2 Multi-layer Perceptron 21
2.2.3 Activation Functions 22
2.2.4 Training . 23

2.2.4.1 Loss functions 23
2.2.4.2 Optimisation 24
2.2.4.3 Regularisation: Dropout 27

2.2.5 Recurrent Neural Networks 28
2.2.5.1 Backpropagation through time 29
2.2.5.2 The Vanishing & Exploding Gradients Problem 30

5

2.2.5.3 GRU . 30
2.2.5.4 LSTM . 32
2.2.5.5 Stacked Recurrent Neural Networks 34
2.2.5.6 Bidirectional Recurrent Neural Networks . . . 34

2.3 Word Embeddings . 36
2.3.1 Word2Vec: Skip-Gram 38
2.3.2 Word2Vec: Continuous Bag-of-Words 39

3 Methods 41
3.1 Word Embeddings . 41

3.1.1 Evaluating Embedding Quality 44
3.2 Proposed Classification Model Architecture 46

3.2.1 GRU & LSTM . 47
3.2.2 Loss Calculations . 49

3.3 Performance Metrics . 49
3.3.1 Comparison to Naive Bayes 50

4 Environment & Implementation 51
4.1 Data collection . 51

4.1.1 Tools Used . 51
4.1.2 Flaws & Assumptions Surrounding Data 52

4.2 Data processing . 52

5 Evaluation & Discussion 53
5.1 Results . 53

5.1.1 Word Embeddings . 53
5.1.2 Classification Model 60

5.1.2.1 Experimentation process 60
5.1.2.2 Results . 62

5.2 Analysis . 67
5.2.1 Simpler RNN Architectures Are Favoured 67
5.2.2 Potential Missed Opportunities 68
5.2.3 Flaws in Results . 68

5.3 Revisiting Research Questions 68
5.3.1 Predicting Political Bias in Print Media 69
5.3.2 Predicting Political Bias in Unbiased Media 69
5.3.3 The Best Performing Model for Determining Political

Bias . 70

6

6 Conclusions 71
6.1 Future Work . 73
6.2 Closing Words . 74

7

Chapter 1

Introduction

1.1 A Marriage of Media Bias and Machine

Learning

As members of society, it is unavoidable that we consume media on a daily
basis, even if we are not explicitly going out of our way to find it. This gives
an inherent amount of power to those who are responsible for generating such
media, as there is a capability to influence and sway opinion. Furthermore,
many people actively seek out media in which to delegate their own opinions.
That is, they consider the media sources to be more well informed than they
are, so look to this in order to find an opinion in which to share.

Many members of the British public hold strong opinions on the partisan
nature of the print media. For example, when polled by YouGov [8], out of
those who held opinion of the political bias on the popular newspaper The
Daily Mail, 81% believed that it was leaning towards the right-wing, with a
total of 44% going as far as to say that they believe the outlet to be “very
right-wing”. However, these opinions are purely subjective and hold little
weight in a formal context. But, the apparent unity of the British public on
topics such as these hints that there could be some way in which this could
be formalised, of which we will try to pinpoint as a research focus of this
thesis.

These opinions that the British public believes the newspapers’ to possess
is not without impact: In a study conducted by Wanta, Golan and Lee of the
US media [42], they found that for the countries that were more commonly
covered in the US media, the American public widely considered these to be
more important to the “American interest” as a whole. Furthermore, within
the countries that received negative attention from the media, the public
followed suit and also employed a negative opinion of the country. Perhaps

8

CHAPTER 1. INTRODUCTION 9

more interestingly, countries that received positive attention from the media
did not necessarily receive more positive support from the American public.
Whilst this is not within the UK specifically, this showcases the general
receptive nature of the public when given opinions about nations (and their
ideologies) as news.

The 2016 referendum of the UK’s membership in the EU serves as an
ideal base for our studies. During this time, many of the mainstream British
newspapers gave an explicit endorsement to a certain campaign [15] [27] [31]
that can be used as a ground truth for predicting political bias in articles
around this topic. This is also quite a relevant point of interest to study,
as the referendum results were very close (51.89% voting to leave, 48.11%
voting to remain), we can see that even minor forms of influence from the
media on public opinion has the possibility to sway the outcome of an entire
vote.

With more recent developments in textual analysis, such as the advent
of the Word2Vec collection of algorithms created By Mikolov, Chen, Cor-
rado and Dean in 2013 [29], we are able to able to represent words in a
vector space whilst preserving the word relationships with a high level of
accuracy. Furthermore, there exists high-dimensional “pre-trained” datasets
implementing these word embeddings over billions of existing news articles.
These complex models accurately represent the highly nonlinear relationships
between terms in news articles, and perhaps these could existing embeddings
could transferred over effectively into a new problem domain — modelling
term relationships in British news articles covering the lead up to the EU
referendum vote on the 23rd June 2016.

There have also been waves of developments utilising recurrent neural
networks for classification tasks, with the advent of “gates” in model cells
that regulate the quantity of information travelling through a network. This
is shown by the creation of the Gated Recurrent Unit by Chung et al. in
2014 [14], and the LSTM cell by Hochreiter et al. in 1997 [24]. Recurrent
neural networks have traditionally been hampered by the issue of maintaining
the influence of long term dependencies in the learned weights of a network
(known as the vanishing gradients problem), but the utilisation of gates helps
to mitigate this issue. When modelling long form text, such as entire news
articles, we could capitalise on these more recent developments in such a
way that we can classify entire documents into a political ideology, whilst
maintaining important learned weights that may be formed at any point in
the document. However, there are multiple different approaches to be able
to classify political bias using recurrent neural networks, and we would like
to be able to compare and contrast different approaches to be able to give a
“best” model that generates the most accurate classification predictions for

CHAPTER 1. INTRODUCTION 10

articles surrounding a given topic.

1.2 Research Questions

With this in mind, our research questions are as follows:

RQ1: Are we able to find a way in which to determine political bias in the
traditional British media, by utilising ground truths around certain
events such as the European Union referendum endorsements made to
affirm political bias in the way that articles are framed?

RQ2: Are we able to find a way in which to predict a political bias in suppos-
edly unbiased outlets, such as the BBC, by utilising the ground truths
surrounding events such as the EU referendum endorsements made by
the traditional print media?

RQ3: Which machine learning models produce the highest amount of accu-
racy and shortest training time in which to make effective predictions
of the political biases of news articles?

1.3 Structure of the Thesis

1.3.1 Background

1.3.1.1 Political Bias Background

In this section we will more accurately define our problem domain. We will
give background to the political climate in the UK, through the eyes of the
print media. We will talk about how the print media has influence over the
British population, showing examples where they have had impact. We will
also give background into the semantics of our problem domain; we will define
what types of bias there are, and what kinds of bias we will be looking to
determine using with our own model. Finally, We will talk about the exact
problem domain that we are looking to work over — the 2016 European
Union referendum. Here we will set the scene for how the newspapers acted
during this time, and what questions are left open that we could aim to
answer.

CHAPTER 1. INTRODUCTION 11

1.3.1.2 Sequence Classification Background

In this section we will approach the problem from a technical standpoint. We
will summarise neural networks in simple terms, and talk about recurrent
neural networks, from their inception to more recent developments. We will
also talk about ways in which to convert sequences of words to numerical
vectors that can be parsed by these recurrent neural networks. We will talk
about the different methods that we will be looking to utilise in our methods.

1.3.2 Methods

Here we will propose a solution in which to determine political leaning in
news articles. We will defend this proposal and argue why we aim to take
this approach over other ones. We will also showcase similar studies that
have resorted to similar methods to solve this problem.

1.3.3 Environment & Implementation

In this section we will describe the environment surrounding the study and
how this was implemented. With the methods described in the previous
section, we will here describe what was done in concrete terms in order
to make this a reality. We will then talk about real-world limitations of
implementing a political bias classifier in a real world situation. We also talk
about potential flaws in the methods that were taken on, and how they might
adversely affect the results that were generated.

1.3.4 Evaluation & Discussion

In this section we will talk about different means of gauging success and
use this to argue why a certain model and set of hyperparameters produces
the best results. We will make some provisional conclusions on the imple-
mentation, and point towards a single best result that solves the problem of
performing a binary classification of political bias over newspapers articles
covering the European Union referendum campaign. Here we will also discuss
what caused the results to be as they are, and provide brief insight on how
we could possibly improve upon these results with some small improvements.

1.3.5 Conclusion

Finally, we will summarise the work done. Here, we will talk about whether
we were able to answer the question of concretely determining political bias

CHAPTER 1. INTRODUCTION 12

in news articles, more specifically surrounding the 2016 EU referendum cam-
paign. We will also answer each of the research questions proposed in the
introduction. Here, we will also talk about what could be done in the future
to build upon and improve the work laid out in this document.

Chapter 2

Background

2.1 Background of Political Bias in British

Media

According to a 2019 study by YouGov [2], 53% of adults in the UK hold little
to no trust in the information provided by national broadsheet newspapers.
This information is amplified even further in online-only news outlets, where
60% of adults believe have little to no trust in the information provided.
This sets the baseline for motivating a study into bias in media outlets in
the UK — we would like to be able to formally denote bias in certain types
of articles from certain outlets, as it is clear that trust in media outlets from
the British population is especially low.

We can also refer to a study conducted by YouGov in 2017 for a general
insight into the British population and how they consider the newspapers
to be biased (shown in Figure 2.1). It is clear that the populous consider
certain newspapers to be closely affiliated with certain ideologies (for exam-
ple, The Daily Mail being considered right-wing, and The Guardian being
considered left-wing), but this is purely subjective: people are only able to
gauge a political opinion of a news outlet based on their own feeling. With
this intrinsic subjectivity in mind, would it be possible to use the explicit
endorsements that newspapers provide surrounding certain events (such as
the 2016 European Union referendum) in which to deterministically define
the political bias of certain articles? Using this philosophy we could take a
more concrete approach into labelling political bias in the media.

13

CHAPTER 2. BACKGROUND 14

The Guardian

The Mirror

The Independent

The Times

The Telegraph

The Sun

The Daily Express

The Daily Mail

5

6

4

14

21

26

29

44

7

11

6

28

32

26

27

26

7

7

11

28

20

16

18

11

11

9

37

17

14

8

12

6

25

26

26

9

7

8

8

6

30

30

13

3

4

8

4

3

16

11

4

1

1

7

1

3

Very left-wing Fairly left-wing

Slightly left-of-centre Centre

Slightly right-of-centre Fairly right-wing

Very right-wing

Figure 2.1: A stacked chart showcasing the opinions of 2040 British adults
when asked the following question: “Some people talk about ‘left’, ‘right’
and ‘centre’ to describe parties and politicians. With this in mind, where
would you place each of the following?” [8], where each value is shown as
a percentage. Please note that The Daily Express, The Telegraph and The
Times have “very left-wing” values of 1, rather than having “slightly left-of-
centre values” of 14 or 13. Results exclude those polled who said that they
didn’t know a newspaper’s political ideology.

CHAPTER 2. BACKGROUND 15

2.1.1 Media in the United Kingdom

Within the UK, many of the newspapers showcase a political affiliation to
certain parties explicitly surrounding given events [38]. This is most apparent
during general elections, when each newspaper will traditionally publicly
back a certain party, and urge their readership to vote in this direction.

Newspaper 2010 GE 2015 GE 2017 GE 2019 Circulation
The Sun Conservative Conservative Conservative 1 371.19

The Daily Mail Conservative Conservative Conservative 1 199.76
The Mirror Labour Labour Labour 499.82
The Times Conservative Conservative Conservative 406.28

The Telegraph Conservative Conservative Conservative 335.74
The Express Conservative Conservative UKIP 312.77

The Financial Times Conservative Conservative Conservative 168.55
The Guardian Lib Dem Labour Labour 134.57

The Independent Lib Dem Lib Dem None N/A

Table 2.1: Newspaper endorsements given for general elections (denoted in
table as GE) in 2010 [44], 2015 [45] and 2017 [46]. ‘None’ denotes that the
paper made no endorsement for that election. The final column denotes the
2019 circulation for that paper, in thousands [3]. Here we use the statistics
for the weekday edition of the newspaper: For example, We use The Sun’s
daily readership figures as opposed to The Sun on Sunday ’s.

This partisan approach to print media allows for us to be able to extrap-
olate party-based influence at a population level. If we refer to Table 2.1 it
becomes clear that in the past three general elections, the more popular news-
papers often back the Conservative party (with the notable exception of The
Mirror). This shows that a large portion of the British public are exposed
to pro-conservative media, rather than a more balanced source. However, we
would like to be able to further prove that these newspapers follow a certain
philosophy not only through their explicit endorsements, but through the
way in which they word their articles. This kind of subtle bias is something
that people are less likely to pick up on, but still have the potential to be
influenced by.

2.1.1.1 The BBC

The BBC is a unique case in the UK, as it is state owned (and so is less
likely to have intrinsic bias based on the political leanings of its ownership).
Furthermore, the BBC has an official guideline [1] that formalises this im-
partiality.

CHAPTER 2. BACKGROUND 16

“ The BBC is committed to achieving due impartiality in all its output. This
commitment is fundamental to our reputation, our values and the trust of
audiences. The term ‘due’ means that the impartiality must be adequate
and appropriate to the output, taking account of the subject and nature of
the content, the likely audience expectation and any signposting that may
influence that expectation. ”

Figure 2.2: The first paragraph of the BBC editorial guidelines, section 4.1:
Impartiality [1]

This means that the BBC has a duty to report all sides of a story, without
bias. However, the tricky nature of this means that it is likely that the BBC
could have a minor political bias in the way that its articles are phrased.
Here, we will aim to utilise the impartiality of other news sources to either
confirm the BBC’s own impartiality or preference to certain political parties
and ideologies.

2.1.2 Types of Bias

We can divide the slant of the media into several definitions (which we will
specify here). Whilst all media has a responsibility to report correct news
(and for the sake of this study, we assume that they do), there can be nuances
in how the news is reported that can have a significant impact in how this
is processed by the reader. A portion of political bias can be determined
by what news is reported, and how this is presented to the reader (aside
from the content of the article itself). Because this is often a human-based
activity, we can assume that there will be some level of subjectivity in how
the news is presented to the reader, and what is prioritised.

Another area of political bias is called selection bias [33]. Some stories
may not be covered by some outlets at all, but may be considered vitally
important to others. This is a human-based process of how important a news
outlet considers an issue to be. This can often by swayed by the demographic
of the newspapers’ readership, their target audience, or even the owner of the
newspaper itself. The ability to not cover a story at all can be a manner in
which to shape public opinion surrounding certain issues, without explicitly
being biased in the news text itself.

If a topic is covered by a newspaper, they may choose to omit certain parts
of the story, or they may choose to have the story occupy more physical space
on the page to grant additional exposure to it. This is known as coverage
bias [4]. When there are many breaking stories surrounding a large issue
(such as in the lead up to the European Union referendum in the UK in

CHAPTER 2. BACKGROUND 17

2016), only covering certain parts of a story can be an effective way in which
to mould an audiences opinion in a certain direction.

If we then assume that all relevant aspects of a story are covered by a
news outlet, the newspaper is still able to present facts in such a way to
point the audience in a certain direction. This is known as framing bias [18].
Often, this is down to the individual journalist and their writing style. Here,
the way that facts are presented are often aligned with the journalists own
beliefs, which makes it difficult for a reader to create their own opinions from
the facts presented. At an even more nuanced level, it is possible that the
specific wording that is used to convey a fact can have micro-effects in how
a user responds to them. Framing bias can be often very subtle but when a
news outlet has an extensive reach to a large audience, this can have a large
real-world impact in political opinion.

Lastly, statement bias [37] is the perspective of the individual who writes
the article. This is when the author will make opinionated comments in
an article that represents their own beliefs surrounding a topic. This will
often be separated into opinion columns for various outlets, but others will
intertwine statement bias with factual news reporting. This often makes for
better reading for someone who already agrees with the opinion of the author,
however, for audiences who are unopinionated on a topic, this makes it more
likely that the user will adopt the same opinion as the author.

The combination of these subtle (and obvious) ways in which to convey
a certain bias can mean that it can be somewhat straightforward to push
an audience towards a certain ideology surrounding certain issues. Next, we
will cover studies of these biases in a real-world scenario, namely the 2016
United Kingdom referendum of its membership in the European Union.

2.1.3 The 2016 European Union Referendum

In the lead up to the EU referendum on the 23rd of June 2016, many of the
leading newspapers in the UK diverted the brunt of their attention towards
the topic, with 77% of articles published on the leading news outlets in the
UK providing coverage relating to the EU referendum [31] in the final week
preceding the referendum vote. However, much of the reporting was done so
giving focus to the strategies taken by both sides, which lead to many de-
tailed issues being left under the radar. In a study by Oxford University [31],
41% of referendum-related articles were labelled as pro-leave, 27% were la-
belled as pro-remain (with the remaining articles being considered to have no
significant referendum-based leaning). Yet conversely, in a study conducted
by Deacon et al. at Loughborough University [15], many papers were shown
to present a balanced or neutral view in their referendum related articles,

CHAPTER 2. BACKGROUND 18

(a) A headline from the pro-leave
newspaper The Daily Express

(b) A headline on the day of the ref-
erendum vote from the pro-remain
newspaper The Guardian

Figure 2.3: A side-by-side contrast of headlines published by a pro-leave and
pro-remain outlet relating to the referendum vote, respectively.

with 7 out of 10 newspapers studied presenting a balanced view in over 40%
of articles printed.

Within the national newspapers, the majority of the more popular out-
lets explicitly endorsed either the pro-leave or pro-remain campaigns. The
pro-leave campaign was supported by The Sun, The Daily Mail, The Daily
Express, The Sunday Express, The Daily Telegraph, The Sunday Telegraph,
The Sunday Times, and The Spectator. Eight prominent newspapers sup-
ported Remain: The Guardian, The Times, The Financial Times, The In-
dependent, The Mail on Sunday, The Mirror and The Observer [31]. Whilst
many of these newspapers declared their endorsements in the final week of
the referendum vote (with the exception of The Daily Express), some of
the newspapers expressed euro-sceptic sentiment prior to the referendum an-
nouncement.

According to the study conducted by Moore and Ramsay [31], immigra-
tion was presented to be a large issue by the pro-leave newspapers, making a
front-page appearance on 78 occasions, with only 12 in total being published
by largely pro-remain outlets. Here, we could assume that the newspapers
publishing more articles related to immigration issues, are targeting audi-
ences that have more divisive opinions regarding immigration. Whilst some
of these articles were not directly relating to the UK’s membership in the EU

CHAPTER 2. BACKGROUND 19

directly, this might be an issue that pushes the audience in a certain direc-
tion (as immigration was a topic covered extensively by the leave campaign
itself [10]). However, this higher level of exposure for immigration coincides
with data from the study conducted at Oxford University, where a sample
of 1,000 people were asked “What is the most important issue facing Britain
today?”. The results from this showed that concern regarding immigration
was highest in the second half of 2015, where 56% considered it to be the
most important issue. Whilst this doesn’t directly align with a pro-leave phi-
losophy, the leave parties’ utilisation of immigration as a cornerstone of their
campaign seems to hint at their capability to convert uncertain voters over
this issue. Furthermore, the pro-leave newspapers printing more far more
headlines on this subject than the pro-remain ones would seem to confirm
this.

41%

Pro Leave

27%

Pro Remain

24%

Mixed/Undecided

8%

No position

(a) Unweighted article biases

48%

Pro Leave

22%

Pro Remain
26%

Mixed/Undecided

4%
No position

(b) Weighted article biases by news-
paper reach

Figure 2.4: A pie chart showcasing the the classification of biases in 2378
studied articles by Oxford University [31]

Whilst immigration has always been an important issue to the British
public (being considered as the most important issue in the UK by at least
20% of people regularly from 2003 onward), the EU/Common Market has
not raised the same level of concern. In fact, less than 10% of the public
considered the EU to be the most important issue in the final months of 2015.
However, this concern spiked soon after, recording a peak of 33% saying is
was most the most important topic just before the date of the referendum
vote. This hints towards the British public not holding particularly strong
opinions towards the EU until very close to the day of the vote. This then
gives the opportunity for the newspapers to be able to sways opinions of
undecided voters more easily.

CHAPTER 2. BACKGROUND 20

With this in mind, we could say that the leave campaign had not seen so
much more exposure in the newspapers vs the remain campaign (with 41%
articles being pro leave vs 27% respectively). However, this figure becomes
amplified still if we apply a weighting for the reach of newspapers (conduced
by Prime research). After this weighting is applied, we can impact of the
pro-leave media increases to 48%, whilst the pro-remain media decreases to
only 22% (as shown in Figure 2.4). This shows that the leave campaign has
the potential to influence a larger audience with their biases than the leave
campaign. In a referendum that resulted in 51.89% of votes going to leave,
and 48.11% going to remain, there is potential for even minor differences
in campaigning and media coverage being enough to tip the result in one
direction or the other.

But this still leaves one question open: can we further determine this
political bias programmatically rather than via human opinion? If we are
able to utilise statistical methods to predict leanings of articles, we may be
able to confirm supposed bias in certain outlets, or we may be able to predict
bias in outlets that do not explicitly state a bias. Finally, we may be able
to give a political bias (as a percentage) for outlets that supposedly aim to
completely unbiased (such as the BBC).

2.2 Background of Corpus Classification

2.2.1 Naive Bayes

Perhaps the most simple of machine learning algorithm is the Naive Bayes.
A Naive Bayes classifier is based on the Bayes Theorem, which is as follows:

P (A|B) =
P (B|A)P (A)

P (B)
. (2.1)

Intuitively, the Bayes Theorem states that we can find the probability
of A happening given the occurrence of B. To put this into the perspective
of a text classification problem, we can find the probability of a sentence
X = (x0, x1, . . . , xn), containing individual words xi, having a pro-remain
bias (i.e a label y), given a similar article B which is known to have a similar
bias. With this context, we can rewrite Bayes Theorem as follows:

P (y|X) =
P (X|y)P (X)

P (y)
. (2.2)

Since X is a vector of words, we can expand these, which allows us to
calculate the probability of their appearance in a sentence, given the input

CHAPTER 2. BACKGROUND 21

dataset.

P (y|X) =
P (y|x0)P (y|x1) . . . P (y|xn)P (y)

P (x0)P (x1) . . . P (xn)
. (2.3)

This allows us to generate the likelihood of a certain output class (in
our case, either pro-leave or pro-remain) given a certain set of input data.
However, the Naive Bayes assumes that each feature is independent of each
other; in our context this would imply that a word x0 does not influence any
other word in the input vector, X. Intuitively, we know that each word in
natural language is dependent on and influences the context in which it is
used. Regardless, the Naive Bayes can be thought of as a base of comparison
for more complex methods in which to classify textual data.

2.2.2 Multi-layer Perceptron

x0

x1

...

xD

y
(1)
0

y
(1)
1

...

y
(1)

m(1)

y
(2)
0

y
(2)
1

...

y
(2)

m(2)

y
(3)
1

y
(3)
2

...

y
(3)
C

input layer
1st hidden layer 2nd hidden layer

output layer

Figure 2.5: Network graph of a 3-layer perceptron with D input units and C
output units. Each hidden layer l contains m(l) hidden units.

Of the deep learning algorithms that we see today, many of these stem
from the multi-layer perceptron. The goal of the the multi-layer perceptron
is to estimate some function, f ∗. If we are to have a classifier y = f ∗(x), we
are mapping our input, x to our label, y.

In a typical feed forward network, we feed our input data x in a single
direction through the network (as shown in Figure 2.5). Here, each node is
a perceptron that has a classification rule as follows:

CHAPTER 2. BACKGROUND 22

f(x) =

{
1, if w · x+ b > 0

0, otherwise
(2.4)

However, one caveat of using a single perceptron is that it is unable to
capture complex nonlinear relationships between variables. To get around
this, we can introduce more linear classifiers to be stacked on top of the
current with certain activation functions (shown in Subsection 2.2.3) that
allow us to more accurate capture these nonlinear relationships.

2.2.3 Activation Functions

−6 −4 −2 0 2 4 6

0

0.5

1

σ(z) = 1
1+exp(−z)

f(z) = tanh z

(a) The logistic sigmoid (in blue) and
tanh (in red) activation units.

−5 0 5

0

2

4

6

g(z) = max{0, z}

(b) The Rectified Linear Unit

Figure 2.6

If we are to model a multi-layer artificial neural network with only linear
layers, it can be shown that the whole function remains a linear function of its
input. For example, if we had two functions f (1)(x) = W>x and f (2)(h) =
h>w, then we can say that f(x) = w>W>x. This can be simplified down to
f(x) = x>w′, if we say that w′ = Ww. Therefore, we want to use nonlinear
functions to correctly capture the complex nonlinear relationships within our
input features.

One such activation function is the logistical sigmoid. Since the logistical
sigmoid is a nonlinear function, it is able to model the nonlinear mappings
between inputs and outputs more accurately. Its equation is shown below:

σ(z) =
1

1 + exp(−z)
. (2.5)

CHAPTER 2. BACKGROUND 23

However, one drawback with the sigmoid function is that it pulls values
to each end of the Y axis. That is, there is a lot of variance in output y
values when given a z value that is close to zero. This means that if we have
very high or very low values of z, this will result in very little change in the
output of the sigmoid function. This is known as vanishing gradients. This
is especially the case when dealing with long term dependencies (a common
case with RNNs, described in Section 2.2.5)

One alternative to the logistical sigmoid function, to help us with the
vanishing gradients problem is the Rectified Linear Unit (ReLU). As visible
in Figure 2.6b, the increase in y values is linear with respect to any posi-
tive input values z. Since ReLU is almost a linear function, this makes it
easier to optimise using gradient based methods. One additional benefit is
its capability to output a true zero value, reducing the potential amount of
computations needed. However, due to its non-negative linearity, this puts
it at risk of exploding gradients. This means that it is not ideal for recur-
rent neural networks, as these introduce more long term dependencies where
gradients can continually spiral.

g(z) = max{0, z}. (2.6)

2.2.4 Training

2.2.4.1 Loss functions

When our model has made a series of predictions, we need a way to be able
to gauge the quality of our predictions, which we can then use to tune the
learnable weights of our model. For many binary classification problems, we
would use cross entropy with a number of two possible classes (using a mean
reduction over losses for each prediction).

`(x, y) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)). (2.7)

In this equation, we take the log probability of a positive score (y = 1),
and add log(p(y)) to the loss for this prediction. Then we add the probably
of the negative outcome (y = 0), log(1 − p(y)), and add this to the loss for
this prediction. Then, we take the mean across all predictions and this gives
us out total loss value.

Since we are working with predictions that are in the range [0, 1] (i.e a
Bernoulli output distribution), we will often use a sigmoid activation (shown

CHAPTER 2. BACKGROUND 24

in equation 2.5), which will allow us to “squash” our outputs from our neural
network into this range.

2.2.4.2 Optimisation

When we are training our model, we need to be able to work calculate the
loss and tune our models learned parameters based on this. One of the more
simple and popular approaches to solving this problem is Stochastic Gradient
Descent (known also as SGD).

SGD descent is an extension of the basic gradient descent computation,
shown as follows:

∇θJ(θ) =
1

m

m∑
i=1

∇L(x(i), y(i), θ). (2.8)

In the above equation, we are calculating the gradient of the objective
function J(θ) for each input vector xi in our training set of size m. We can
see here that the gradient of the objective function is simply the average of
the gradient of the loss function, for our parameters θ ∈ R. We then apply
this in our update function with a static learning rate η as follows:

θ = θ − η · ∇θJ(θ). (2.9)

One of the issues with calculating gradient in this way is that its compu-
tational cost is O(m). This is fine for smaller training sets but can quickly
becomes more troublesome as our training set size, m, increases. For this
reason, we can calculate the gradient based on a mini-batch of samples (of
size n) that are drawn uniformly from the training set. We often keep the
number of mini-batches used, m′, constant in gradient calculations, which
allows us to keep our gradient calculation cost at a minimum when working
over larger training sets.

∇θJ(θ;x(i:i+n); y(i:i+n)) =
1

m′
∇θ

m′∑
i=1

L(x(i), y(i), θ). (2.10)

In the same way as standard gradient descent, we apply the learning
rate to the estimate of the gradient in order to take a step for our learned
parameters.

θ ← θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n)). (2.11)

One drawback of updating the weights in this way is that our learning
rate η is static throughout the entire training process of the model, and can

CHAPTER 2. BACKGROUND 25

have a significant impact on the model performance (if we have too high of a
learning rate, we are less likely to converge on an optimum, if we have a low
learning rate, we might not reach our optimum parameters at all). One way
of solving this issue is having adaptive learning rates throughout the course
of learning. We can do this by introducing momentum into our update
calculations. For SGD, instead of applying the learning rate directly to the
gradient estimate, we use it to calculate a velocity value v (parameterised by
a momentum value γ) as follows:

vt ← γvt−1 − η∇θJ(θ)

θ ← θ − vt.
(2.12)

However, one drawback to this velocity based approach is a lack of fore-
sight. Our velocity value is calculated entirely based on the previous step
γvt−1. But, we can utilise the Nesterov Accelerated Gradient [32] to
apply our velocity with momentum to our parameters, to give us an estimate
of the next position of the parameters, giving us an estimate of the next
parameters:

vt ← γvt−1 + η∇θJ(θ − γvt−1)
θ ← θ − vt.

(2.13)

One adaptive learning algorithm that utilises this approach is Adagrad [17].
However it goes one step further by adapting the updates for each individual
parameter, based on its importance. For parameters with frequently oc-
curring features, learning rates are decreased. Conversely, parameters with
infrequent features are given higher learning rates. Here we show the gradient
at time step t for each parameter θi and its corresponding update step:

gt,i ← ∇θJ(θt,i)

θt+1,i ← θt,i −
η√

Gt,i,i + ε
· gt,i. (2.14)

In the update rule, we can see that the learning rate η is modified to be
for each parameter, based on the past gradients that have been computed for
each specific parameter θi. In each update step we divide the learning step
by Gt, which is a diagonal matrix, where each element i, i is the sum of the
squares of gradients, with respect to the parameter θi at the given time step t.
We then apply a smoothing term ε to avoid any divisions by zero. However,
the usage of this squared gradients is also its main flaw: the sum will always
increase throughout training (since each added value is positive), therefore

CHAPTER 2. BACKGROUND 26

the learning rate will continue to shrink and become smaller, reducing the
effectiveness of the algorithm as time progresses.

Adadelta [47] is an extension on Adagrad that reduces this rapid reduc-
tion in learning rate. Adadelta instead stores that previous squared gradients
as a decaying average. We then store the running average E[g2]t at time step
t which is calculated only on the previous average, and the current gradient
value. This allows us to replace the diagonal matrix Gt from Adagrad with
our running average:

E[g2]t ← γE[g2]t−1 + (1− γ)g2t

∆θt ← −
η√

E[g2]t + ε
gt.

(2.15)

However, when using a gradient (rather than parametric) set of units in
algorithms such as SGD or Adagrad, these do not align with the type of units
that we are outputting with the above equations:

units of ∆x ∝ units of g ∝ δf

δx
∝ 1

units of x
. (2.16)

To get around this, we replace the learning rate with another exponen-
tially decaying average, based upon the squared parameter updates.

E[∆θ2]t ← γE[∆θ2]t−1 + (1− γ)θ2t . (2.17)

We then take the root mean squared error of these parameter updates,
and slot this into our update rule:

∆θt ← −
√
E[∆θ2]t + ε√
E[g2]t + ε

gt

θt+1 ← θt + ∆θt.

(2.18)

One popular adaptive learning algorithm that employs a similar approach
is known as Adaptive Moment Estimation [26] (Adam). Adam takes a
similar approach to Adadelta, by taking an exponentially decaying average
of past squares gradient. But in addition to this, it also takes a decaying
average of past gradients, which is similar to momentum. Both of these are
computed as follows. Both of these are estimates of the first and second
moments of the gradients respectively.

mt ← β1mt−1 + (1− β1)gt
vt ← β2vt−1 + (1− β2)g2t .

(2.19)

CHAPTER 2. BACKGROUND 27

One issue with these vectors mt and vt is due to their zero-initialisation
values, they are biased towards zero. To get around this, a bias is applied to
each estimate:

m̂t ←
mt

1− βt1
v̂t ←

vt
1− βt2

.
(2.20)

Similar to Adagrad, we take the square root of the second moment matrix
estimate, and use this as a denominator to divide the learning rate η by,
finally multiplying with the first moment matrix estimate to calculate the
update step quantity:

θt+1 ← θt −
η√
v̂t + e

m̂t. (2.21)

Another adaptive learning algorithm that utilises adaptive learning rates
is RMSProp [22]. This is a modification on the existing AdaGrad algorithm,
but we use an exponentially decaying average, which allows us to remove
history from the past. This prevents us from setting a learning rate that is
too small, when using a non-convex function to train the neural network.

vt+1 ← αvt + (1− α)(∆θJ(θt))
2

θt+1 ← θt + ε
∆J(θt)√
vt + λ

.
(2.22)

2.2.4.3 Regularisation: Dropout

Dropout [41] is a computationally inexpensive method in which to prevent
overfitting in large-scale neural networks. It works by training an ensemble of
sub-networks that are possible permutations of the original network, but with
a certain percentage of non-output layers removed. In modern networks, we
can ‘remove’ a unit from the network by multiplying its output value by zero
(which is also utilised in forget gates in gated recurrent neural networks, as
shown in Section 2.2.5.3). Dropout works alongside minibatch based learning,
with functions such as SGD. Each time we load a minibatch, we take a
random sample (of a certain size) a binary mask to apply to all of the input
and hidden units in the network. Each binary mask for each unit is sampled
independently from all other mask vectors. For any of these layers, the mask
is a variable rt that has a probability p of being 1. We then perform an

CHAPTER 2. BACKGROUND 28

+1

y
(l)
3

y
(l)
2

y
(l)
1

z
(l+1)
iW

(l+1)
i y

(l+1)
i

b
(l+1)
i

f

(a) Standard network

+1

y
(l)
3

y
(l)
2

y
(l)
1

r
(l)
3

r
(l)
2

r
(l)
1

×

×

×

ỹ
(l)
3

ỹ
(l)
2

ỹ
(l)
1

z
(l+1)
iW

(l+1)
i y

(l+1)
i

b
(l+1)
i

f

(b) Dropout network

Figure 2.7: Two diagrams showcasing a standard network, versus one with
a dropout layer at layer l. The vector of random Bernoulli variables r

(l)
i is a

set probability p that the value will be 1. We then perform an element-wise
multiplication in order to drop certain connections in the network, producing
thinned outputs ỹ

(t)
1 , which can then progress through the network as normal.

element-wise multiplication with the outputs of that layer y, in order to
create a thinned output ỹ. These thinned outputs are then fed into the next
layer (where the dropout process repeats).

2.2.5 Recurrent Neural Networks

When we are looking to work with sequential data, and with sequences with
variable length, Recurrent Neural Networks [36] are a natural fit due to the
way that they are able to reuse the same parts of the model recurrently for
each element in a sequence. This means that a single recurrent unit can be
reapplied to each element in a sequence of arbitrary length. After each time
step, a hidden state h can be updated based on the previous hidden state,
and the new input xt at time t.

h(t) = f(h(t−1),xt;θ). (2.23)

This means that we can ‘unfold’ a recurrent neural network into a series
of the same function calls, with differing sequential inputs xt at each time
step t being reused on the transition function f . If we are to introduce an

CHAPTER 2. BACKGROUND 29

activation function and learned parameters, the update function of recurrent
hidden state can be shown as in Figure 2.8.

h

x

E

f

Unfold

h0

x0

E0

h1

x1

E1

f

...

ht−1

xt−1

Et−1

f

Et

ht

xt

f

Figure 2.8: A basic recurrent network architecture, without any activation
layers or outputs. Hidden states are calculated from left to right using the
same objective function, taking in new parameters x at each time step t

However, an issue that arises with this approach is maintaining gradients
calculated many iterations ago. Many of these gradients will tend to vanish
or explode (This is covered more in depth in Section 2.2.3). When we are
working with weights that become exponentially smaller the further through
the network we progress, it becomes a challenge to maintain the relevance of
past weights further down the network (i.e as time increases).

2.2.5.1 Backpropagation through time

When calculating gradient for a recurrent neural network, we can apply the
same general backpropagation algorithm utilised for feedforward neural net-
works, however we apply it instead to the unfolded computational graph.

As shown in Figure 2.8, for each time step t taken in our recurrent neu-
ral network, we have a new error value E. This error is used to calculate
the gradients needed for our optimiser function (such as gradient descent or
Adam). We calculate these gradients in much the same way as a traditional
feed-forward neural network would, using backpropagation.

The basis of backpropagation in a recurrent neural network is to calculate
the sum of the partial derivatives of our learned parameters, with respect to
our error E at each time step t. For example, to calculate the gradient of the
error with respect to a weight vector W across our RNN we would calculate:

δE

δW
=
∑
t

δEt
δW

. (2.24)

CHAPTER 2. BACKGROUND 30

To calculate the partial derivative of our weight vector with respect to our
error E, we can utilise the chain rule to be able to take the partial derivative
of a weight at a certain time step:

δEt
δW

=
t∑

k=0

δEt
δŷt

δŷt
δht

δht
δhk

δhk
δW

. (2.25)

In the above equation we assume that we output some prediction ŷ at a
time-step t, and this prediction is calculated using our hidden state W which
is parameterised by our learned weight vector W , that is directly dependent
on the previous state ht−1. This means that each of our hidden states is
directly dependent on every other hidden state k that comes before it.

2.2.5.2 The Vanishing & Exploding Gradients Problem

However, calculating gradients in this way over a long sequence lends itself
to a problem known as the vanishing gradients problem, first showcased by
Hochreiter [23]. If we are performing our backwards calculations on over
activation functions such as the sigmoid function (shown in Figure 2.6a), if
some of our activation functions result in low gradients (such is the case at
either end of the sigmoid graph), these gradients shrink exponentially fast
throughout the backpropagation calculations through the network, which
can cause them to effectively vanish completely. Conversely, if we have high
gradient values, then these can propagate through the network and cause
the opposite, for our gradients to explode in value. In the worst case in a
practical scenario, this can cause our training process to crash due to the
presence of a NaN gradient value.

The vanishing & exploding gradients problems are not exclusive to RNNs,
however. They are simply more prevalent in RNNs due to the often high
sequence length, which is (somewhat) equivalent to a very deep feedfoward
network, which would also suffer from the same issue. With this in mind,
we can easily see many practical issues with traditional recurrent neural
networks, especially when wanting to preserve the semantic value of long-
term dependencies. This is when gates that regulate the flow of data through
a RNN come in handy, as explained in the next section.

2.2.5.3 GRU

The Gated Recurrent Unit, proposed by Cho at al. [14] aims to resolve the
issue of long term dependencies within RNNs by using series of sophisticated
activation functions that consist of affine transformations, followed by an ele-

CHAPTER 2. BACKGROUND 31

σ σ tanh

× +

× × h̃t

1−

h〈t−1〉

Hidden

x〈t〉Input

h〈t〉

New Hidden

ŷ〈t〉Prediction

rt zt

Figure 2.9: A diagram showing a single GRU cell. Each line represents a
vector, carrying output from one function to the input of another. Circles
represent point-wise operations, and boxes represent learnable network lay-
ers. When lines are joined, this represents a vector concatenation, and when
paths are split, this is done so via creating a copy.

ment nonlinearity function (known as a gated unit). The activation function
of a GRU is broken down as follows:

rt = σ(Wr · [h(t−1), xt])
zt = σ(Wz · [h(t−1), xt])
h̃t = tanh(Wxt · [rt ∗ h(t−1), xt])
ht = (1− zt) ∗ ht−1 + zt ∗ h̃t.

Figure 2.10: The calculations used in a single GRU cell. ht denotes the
hidden state, zt denotes the update gate, h̃t denotes the candidate activation
and rt denotes the reset gate, all at time step t

The activation function ht is a linear interpolation between the candidate
activation, h̃t and the previous activation ht−1. The candidate activation
h̃t is created in a similar fashion to a typical recurrent unit, performing an
affine transformation on the input vector xt, but is different in that it does a
multiplication of the previous hidden state with a reset value, rt. The reset
gate acts in a similar way to the update gate, but due to the multiplication

CHAPTER 2. BACKGROUND 32

in the candidate layer, it can cause the network to ‘forget’ the previously
computed state if the computed rt is close to 0.

Due to the learned parameters of the reset and update gates allows us
to account for longer term dependencies (by setting zt to a higher value),
whilst also reducing the risk of the vanishing gradient problem (by learning
to remove unimportant information at each timestep, whilst preserving values
that carry the most relevance). Similar to the GRU, the LSTM contains a
forget gate, which dictates the flow of information to the internal cell state.
If our forget layer is able to learn when past information in the sequence
is redundant, then it can be discarded via this gate, ft. We then want to
choose what information will be stored inside the cell state, we do this with
a sigmoid layer, multiplied by a tanh layer output vector C̃t. We can then
add this to the forget layer output vector ft multiplied by the old candidate
state C(t−1) in order to get the new cell state Ct.

2.2.5.4 LSTM

σ σ Tanh σ

× +

× ×

Tanh

c〈t−1〉

Cell

h〈t−1〉

Hidden

x〈t〉Input

c〈t〉

Label1

h〈t〉

Label2

h〈t〉Label3

ft

it

C̃t

ot

Figure 2.11: A diagram showing a single LSTM cell. Please refer to the
corresponding GRU Figure 2.9 for information on diagram semantics.

The Long short-term memory model, proposed by Hochreiter and Schmid-
huber [24] predates the gated recurrent unit, and shares a similar cell-based
architectural philosophy.

Similar to the GRU, the LSTM contains a forget gate, which dictates the
flow of information to the internal cell state. If our forget layer is able to
learn when past information in the sequence is redundant, then it can be

CHAPTER 2. BACKGROUND 33

discarded via this gate, ft. We then want to choose what information will be
stored inside the cell state, we do this with a sigmoid layer, multiplied by a
tanh layer output vector C̃t. We can then add this to the forget layer output
vector ft multiplied by the old candidate state C(t−1) in order to get the new
cell state Ct.

However, this cell state Ct cannot be used for predictions, so we push
the values through a tanh layer in order to squash them into a Bernoulli
distribution, and finally multiply this by the output of another sigmoid gate
ot, ensuring that we only output the parts of the cell state that we want to
be included. This then gives us out hidden layer ht which can be used for
making predictions from our model.

ft = σ(Wf · [h(t−1), xt] + bf)

it = σ(Wi · [h(t−1), xt] + bi)

C̃t = tanh(WC · [h(t−1), xt] + bC)

Ct = ft ∗ C(t−1) + it ∗ C̃t
ot = σ(Wo[h(t−1), xt] + bo)

ht = ot ∗ tanh (Ct).

Figure 2.12: The calculations used in a single LSTM cell. ht denotes the
hidden state, it denotes the input gate layer (equivalent to the update gate
in the GRU), C̃t denotes the candidate cell state, ft denotes the forget/reset
gate, and ot denotes the sigmoid output layer, all at time step t

Both the LSTM and GRU work in a similar fashion, by utilising forget
and update gates in order to regulate flow of information throughout the
network. However, whilst the LSTM uses an internal cell state in order to
regulate the flow of information onto the next layer, the GRU instead uses
only reset and update gates, and the reset gate is applied in the candidate
activation calculations, rather than applied afterwards. Due to the smaller
quantity of layers in the GRU, this will often take less time to train than a
corresponding LSTM, but the LSTM has the capability to store a richer set
of interactions with its weights and biases.

However, in practice, the LSTM and GRU are often used interchangeably,
and it often falls down to the problem space (such as political bias detection)
and the input data structure that gives rise to one architecture producing
higher accuracy than the other.

CHAPTER 2. BACKGROUND 34

X

LSTM

LSTM

Activation

Prediction, ŷ

Figure 2.13: A figure to showcase the architecture of a basic 2-layered stacked
LSTM, with activation producing an output prediction ŷ, over all time steps
(i.e covering an entire input vector X)

2.2.5.5 Stacked Recurrent Neural Networks

One approach to improve the performance of LSTM and GRU networks is
to introduce additional cells and “stack” them on top of one another. This
approach has been shown to produce state-of-the-art results in speech recog-
nition [19]. Using a stacked RNN brings benefits to increasing the hidden
size of a single RNN:we introduce a higher quantity of learned parameters,
and since we separate our RNN cells in to a number of layers, we allow for a
higher level of flexibility to capture long-range context.

2.2.5.6 Bidirectional Recurrent Neural Networks

One flaw with the RNN architectures mentioned above is that the hidden
state for each element only contains semantic information based on the hid-
den state at the time steps prior to the input x at its corresponding time-step
t. This means that if an input sequence contains highly important informa-
tion towards the end, the hidden layers before this point are not able to learn
with this information being taken into account. A solution to this is the to
use bidirectional RNNs.

CHAPTER 2. BACKGROUND 35

fully connected layer

Last hidden state
of forward layer

Last hidden state
of backward layer

BiLSTM/BiGRU BiLSTM/BiGRU BiLSTM/BiGRU

x1 x2 xt

...

Figure 2.14: A figure to showcase how a how tail concatenation of BiLSTMs
or BiGRUs can be used to create a representation of an entire input vector
X with equal weighting given to each end, x1 and xt.

Bidirectional RNNs [39] work by training a recurrent neural network si-
multaneously in positive and negative time direction, using two sub-RNNs
h(t)) and g(t). This then allows us to generate output units that contain in-
formation on both the past and the future, but still remains most sensitive
to information within that is within close proximity to the input x at time t.

For a classification task that operates over an entire sequence, there isn’t
much value to be gained from a bidirectional LSTM alone. Since we can just
take the final hidden output ht as a representation of the entire sequence,
which should take into account the long term dependencies through the entire
sequence. However, it has been shown [49] [40] that we can better represent
the entire sequence using BiRNNs when combined with pooling layers. Pool-
ing layers help our model outputs be more invariant to small changes in
the input. These methods work by treating the bidirectional output as a 2-
dimensional ‘image’. When considered in such a way, we can use traditional
convolutional neural network methods such as 2-dimensional maximum pool-
ing in order to create a fixed-length summary of the bidirectional output.

Another approach used (with success) by Shen [40] is to use a ‘Tail BiL-
STM Model’ (shown in Figure 2.14), wherein the last hidden state of the
backward layer, is combined with the last hidden state of the forward lay-
out from the BiLSTM in order to create a fully-connected layer where the
beginning and end of the sequence are treated with equal importance.

CHAPTER 2. BACKGROUND 36

2.3 Word Embeddings

A word embedding can be defined as a way of representing words in a partic-
ular vector space. Particularly what makes this relevant is the capability to
be able to group words in such a way that their cosine similarity, or the ‘dis-
tance’ between words that hold a similar semantic meaning, is minimised.
This can be utilised in political bias classification by being able to deter-
mine similar sentences and understand when the sentiments are similar. For
example, lets look at two politically charged sentences:

• “The EU is a positive force to the UK”

• “The EU should not force its policies on the UK”

We can see here using our human natural language understanding, that
these two sentences hold entirely different meanings. However, there are
many words in these sentences that are shared between the two. If we can
create a word embedding such that the inference can be derived accurately,
then this makes it easier for any further classifications to be able to make
divisions between two seemingly similar, but very different sentences. Let’s
look at another example:

• “Boris Johnson has become the face of the Leave campaign by putting
a number on a bus”

Here there are some common phrases that will almost always be used
together. The words “Boris” and “Johnson” will very often occur in that
order, and always as a pair. For us to be able to classify sentences containing
many phrases such as these, additional value is gained when the model is able
to more easily infer a singular meaning spanning over multiple individual
words.

One metric of determining the similarity between two words, represented
as vectors is via the cosine similarity, shown as follows:

cosine(#»v , #»w) =
#»v · #»w

| #»v || #»w|
=

∑N
(i=1) viwi√∑N

i=1 v
2
i

√∑N
i=1w

2
i

. (2.26)

The cosine similarity between two vectors #»v and #»w is a popular method
in which to able to measure similarity between two vectors. We calculate it
by taking the dot product of the two vectors #»v and #»w and then normalise
this by the absolute values of each of the two vectors, to make the calculated
output invariant to the lengths of each input vector.

CHAPTER 2. BACKGROUND 37

There are many ways in which to convert words into a vector space, but
one of the more recent and influential developments has been Word2Vec [30],
an “efficient method for learning high-quality distributed vector representa-
tions thatx capture a large number of precise and semantic word relation-
ships”. Word2Vec is actually two different approaches in which to achieve
the goal of creating high-quality word embeddings (with some additional hy-
perparameters that can be tuned for higher accuracy). These two approaches
are called Continuous Bag-of-Words (CBOW), and Skip-Gram. Word2Vec
creates vector representations that are short (in our studies ranging from 10
to 300 values) and dense (the majority of values are nonzero). This means
that we have less weights needed in order to train our model, which decreases
the training time of our model, and can often lead to better results.

The intuition behind Word2Vec as a whole is that instead of counting how
many times a word occurs in a document (as used in TF-IDF), we instead
train a simple logistic regression classifier that is able to give a prediction
of how likely a word x is to show up close to a given word w. The word
embeddings that are created are actually a bi-product of this process (these
are the learned weights of the classifier). CBOW and Skip-Gram both tackle
this in slightly different ways, but both achieve the same goal.

INPUT PROJECTION OUTPUT

x1k

x2k

x(C−1)k

xCk

... hi yj

(a) Continuous Bag-of-Words

INPUT PROJECTION OUTPUT

y1,j

y2,j

yC−1,j

yC,j

...hixk

(b) Skip-gram

Figure 2.15: Model architectures showcasing the intuition between Skip-gram
and CBOW methods of Word2Vec. CBOW aims to predict the current word
based on the surrounding context, and Skip-gram aims to predict the sur-
rounding words given the current word.

CHAPTER 2. BACKGROUND 38

2.3.1 Word2Vec: Skip-Gram

The Skip-Gram model [30] trains a classifier that aims to predict the sur-
rounding words, given an input word. It does this by maximising the average
log probability of words wt+j appearing in a training context of size c sur-
rounding a given word wt.

1

T

T∑
t=1

∑
−C≤j≤C,j 6=0

log p(wt+j|wt). (2.27)

Let’s represent our input word as a one-hot encoded vector called x,
which maps to y1, . . . , yc. Our learned weight matrix W contains our vector
mappings for each word in our vocabulary. The matrix has dimensions V ×N ,
where V is the size of our vocabulary, and N is the size of our hidden layer.
We can say that the ith row of the weight matrix corresponds to the ith word
in the vocabulary. Our output is a C × V matrix, where C corresponds to
the size of our training context size.

Since we know that the our input vector is one-hot encoded (i.e only a
single value in the vector is 1, the rest are 0), we can say that the only
element where the weights will be used in the hidden layer computations is
the positive element in our input vector. So we can say that if our input
vector x has xk = 1, then the following holds:

h = x>W = W (k,.) := vWI
. (2.28)

This says that the outputs of our hidden layer will be equivalent to the kth

row of our weight vector W , since this is the only one that will get forwarded
through our hidden layer.

Therefore, we can say that our input to the jth node of the cth output
word is:

uc,j = v′>wj
h. (2.29)

Here, v′>wj
represents the jth column of our output weight matrix W ′. We

can then plug uc,j into a soft-max function in order to get the probability of
the output word wO, given input word wI :

p(wc,j = wO|wI) =
exp (uc,j)∑V
j′=1 exp (u′j′)

. (2.30)

This tells us the probability that the jth element of the cth output word
is equal to the actual value of the jth index of the cth output vector.

CHAPTER 2. BACKGROUND 39

However, one issue with calculating the probability in such a manner is
efficiency, since the number of calculations needed scales linearly with our
vocabulary size V , which can often be very large if we are working over a
large corpus. One approach to solve this issues is the use of Noise Contrastive
Estimation (NCE), introduced by Gutmann and Hyvärinen [20]. We can
simplify this whilst retaining vector representation quality to create negative
sampling, which can be shown by:

log σ
(
v′>wO

vwI

)
+

k∑
i=1

Ewi
∼Pn(w)[log σ

(
−v′>wi

vwI

)
]. (2.31)

Here, the aim is to distinguish the target word wO from draws from a
random noise distribution Pn(w) using logistic regression, where there are k
negative samples pulled for each piece of sample data. The intuition is that
instead of updating the trained weights for all values in the vocabulary for
each input output pair, we instead take a sample of negative words that have
their weights updated. This not only rapidly decreases the amount of time
needed in which to train the network, but it has the possibility to actually
improve the quality of the learned weights in the process.

2.3.2 Word2Vec: Continuous Bag-of-Words

The continuous bag-of-words model follows and almost completely inverted
approach to the skip-gram version. Here, we receive a series of one-hot
encoded context words x1, ...xC with a context window of size C. We output
a V (size of vocabulary) dimensional one-hot output vector which corresponds
to the word that is most probable, given the input word vectors.

We calculate our hidden layer by taking the average of the input vectors,
and taking the dot product of this and our weight matrix W :

h =
1

C
W · (

C∑
i=1

wi). (2.32)

Next, we are able to calculate the input to each element in our output
layer as follows:

uj = v′>wj
· h. (2.33)

Here, we can say that v′>wj
is the jth column of our output weight matrix

W ′. Then, similarly to the skip-gram model, we are able to calculate our
probabilities by feeding this through a soft-max function:

CHAPTER 2. BACKGROUND 40

yj = p(wyj |w1, . . . , wC) =
exp (uj)∑V
j′=1 exp (u′j)

. (2.34)

This then gives us our output yj, which tells us intuitively the probability
of a word appearing given a window of size C of input words. Similarly to the
skip-gram model, these functions amount to two learned parameters for the
continuous bag-of-words model, W (when mapping from input to our hidden
layer) and W ′ (when mapping from our hidden layer to our outputs). In fact,
the only major difference between the operations done by the skip-gram and
continuous bag-of-words models is that CBOW performs a weighted average
step, in order to project to a single N dimensional hidden state. Skip-gram
doesn’t perform this step, but instead uses the output projection weight
matrix W ′ to map to multiple output words uc,j for the context size C rather
than a single output word uj for CBOW.

Chapter 3

Methods

Political bias detection is a well-explored research area, especially where
highly opinionated and short-form texts are within reach [48]. However,
there is lack of labelled data for news sites, as many traditional outlets con-
sider themselves to be politically neutral. The UK is exceptional in this
matter, and by using the explicit endorsements that were given to either the
pro-leave or pro-remain campaigns during the 2016 referendum vote, we can
use these as a ground truth in order to classify further data on its political
bias, within the domain of pro-leave or pro-remain philosophies. It is possible
to use crowd-sourcing methods in order to determine a more fine grained ap-
proach on political bias, but this effectively introduces a level of subjectivity
into those who are responsible for the labelling, as determining political bias
is inherently a subjective task. For this reason, whilst using an endorsement
as a representation of all articles within a certain topic area can be construed
as an aggressive labelling approach, it removes the biggest potential risk in
a study such as this — subjectivity and opinion.

3.1 Word Embeddings

As shown by Mikolov et al. [29], it is possible to model word relationships in
a very precise manner by utilising both variations of the Word2Vec algorithm
(that is, skip-gram and continuous bag-of-words). However, it is completely
possible that our embeddings could be randomly instantiated (as long as
we preserve some means of converting an index that represents a word, to
it’s corresponding embedded vector). It has been shown by Ivyer et al. [25]
that initialising with word embeddings created using the Word2Vec algorithm
(the skip-gram variant) for political ideology classification yields much higher
accuracy than random initialisation methods. This is because we are able to

41

CHAPTER 3. METHODS 42

Input

Embedding Layer (with
pre-trained weights)

LSTM/GRU Layer

Dropout Layer

Tail Concate-
nation Layer

Loss Layer

Prediction

if tail cat == TRUE AND

bidirectional rnn == TRUE

Figure 3.1: A chart depicting the flow of data through the model. This
assumes that the trained word embedding weights are passed in at run-time.

pick semantic features from the datasets more accurately, and doesn’t require
us to manually define the features of the inputs, as others have done in order
to boost accuracy without using more intelligent methods of embedding [12].

With this in mind, we will focus on the Word2Vec family of algorithms
for our embedding training. We will create a series of different embedding
weights and compare and contrast the effectiveness these in our RNN models.
We will tweak a series of hyperparameters in the learning process as follows:

• Window Size:
If we decide to use a larger window, the learned vector representing the
vectorised representation of a word is based on a larger context of each

CHAPTER 3. METHODS 43

words usage (as shown graphically in Figure 2.15). This means that
we might be able to capture important ways in which terms are linked
that may not be captured with a smaller window size (i.e regularly used
N-Grams where N is a higher value). However, if we set this to be too
high, our model may struggle to learn important relationships between
smaller quantities of terms (i.e Bi-Grams and N-Grams where N is a
smaller value).

• Minimum Quantity of Word:
By decreasing the minimum quantity of term appearances required to
be given a term vector representation, we increase the post-embedding
step length of our input vector. For example, if we have an input
sentence “BoJo has ruined the UK”, but the slang term “BoJo” does
not appear in our embedding weights, then after embedding out input
vector will be consisting of the input sequence “has ruined the UK”
(assuming all other terms have embedded representations). This takes
away an arguably important part of our input vector, which makes it
trickier for our RNN models to be able to learn accurately. But, if we
set our minimum quantity to be too low, then we may give our models
a lower quality of embeddings that introduces words that have little
relevance within our problem domain, and so increasing the length of
sequences fed into our RNN layer (which in turn, also increases the
potential of overfitting).

• Quantity of Negative Samples Used:
When we are using the skip-gram variant of the Word2Vec algorithm,
we have the possibility to improve the quality of our embeddings by
feeding in random “noise” samples for each word (alongside the terms
in the window) as a showcase of negative samples (this is shown in
Equation 2.31). We could increase this (i.e showing more negative
samples for each term), but this increases the time taken in which to
train our model, and may yield little benefit after a certain quantity of
negative samples used.

• Embedding Vector Size:
By increasing the size of the dimensionality of the word embedding vec-
tors (i.e the size of our logistic regression classifier used in the Word2Vec
training process), we increase the possibility of modelling more complex
relationships between words. However, if we increase this too much, we
could make our model slower to train (due to a higher dimensionality
of input vector into our RNN layer), and increase the risk of overfitting
in out model. If we make this too low, we run the risk of not modelling

CHAPTER 3. METHODS 44

the relationships between terms enough, and so resulting in a lower
overall quality of embeddings generated.

In addition to manual training over word2vec over our own news dataset,
we propose to compare this to a pretrained model supplied by Google [11],
which has been trained over the Google News dataset (consisting of 3 million
words and phrases). This model is a skip-gram model with negative sam-
pling, with embedding vector size of 300. Since this model was trained over a
far larger dataset than our own self-trained variant, it should represent term
relationships much more effectively. However, since it is an older dataset
(compiled in 2013), it may miss many term specific phrases that are impor-
tant within the domain of the 2016 EU referendum vote (such as “David
Cameron” and “Brexit” are unlikely to have much data in the Google News
dataset, but will be very prevalent in our own).

3.1.1 Evaluating Embedding Quality

When creating our word embeddings, we need to formulate a series of criteria
that can be used to evaluate the “quality” of the generated embeddings. One
such popular method is to utilise the SimLex-999 [21] method of similarity
estimation, to be able to gauge a general level of semantic understanding
of a model. SimLex-999 is a table of 999 word pairs with a corresponding
semantic similarity value, used as a “gold standard” of gauging semantic un-
derstanding. The SimLex-999 dataset was collected from 500 native English
speakers, when given pairs of adjectives, nouns, and verbs, and asked to rate
their similarity. By operating on similarity only, the dataset aims to operate
solely on word semantics, rather than association. For example, terms that
are highly similar (and also associated), such as “happy” and “dull” receive
a high score, of 9.55. However, terms that can be highly associated, but not
semantically similar will receive a low score, such as the terms “sharp” and
“dull” receiving a score of 0.6. In addition to training loss, we can use sim-
ilarity measurements between our trained embeddings and the SimLex-999
dataset to formulate the following metrics of evaluating embedding quality:

• Training Loss:
When creating our Word2Vec embeddings, as our model is a shallow
neural network, we will be given a loss value for our generated embed-
dings. We can utilise this loss to give us a rough understanding of the
effectiveness of the model, which is operating over the same dataset
that will also be used for training our RNN classifier. However, there
are caveats to using the training accuracy as a sole metric of embed-
ding quality, such as risk of overfitting (our model may have a record

CHAPTER 3. METHODS 45

high accuracy / low loss). This risk of overfitting is further amplified
when the small size of the data set is taken into account. For these
reasons, we look to additional general metrics to validate the quality
the generated embeddings.

• Pearson Correlation Coefficient:
The Pearson correlation coefficient [13] is a value in the range [−1, 1]
that dictates the extent in which two variables are (linearly) related.
In the context of word embeddings, we take the correlation coefficient
between the similarity scores given by the SimLex-999 dataset, com-
pared with the similarity scores given by our own embedding models.
The Pearson correlation coefficient can be defined as follows:

rx,y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2

rx,y =
cov(X, Y)

σXσY
.

(3.1)

Intuitively, the following equation tells us to divide the covariance be-
tween the two samples, by the product of the standard deviation. n
represents the sample size (for us, this is the number of word pairs in
the SimLex-999 dataset that also appear our trained embedding vec-
tors), xi and yi represent the similarity value for each word pairing in
each dataset, respectively.

• Spearman Correlation Coefficient:
The Spearman correlation coefficient is a measure of correlation com-
parison between rank variables. Each raw score xi and yi is converted
into a rank value rgxi and rgyi. The Spearman score is then defined
in the same way as the Pearson correlation over these rankings;

rrgX ,rgY =
cov(rgX , rgY)

σrgXσrgY
. (3.2)

By using the rank rather than the raw variable, the Spearman correla-
tion is able to give a perfect correlation between two samples of data,
even if the relationship between them is nonlinear. By taking the rank,
we abstract away the relevance of the data values themselves (making
the resulting correlation value more resistant to noise in the data), and
instead put emphasis on their position relative to other data points.

For this task, we place a higher importance on the Pearson correlation,
rather than the Spearman correlation, due to the importance of the difference

CHAPTER 3. METHODS 46

in actual output values that our model gives us for word-pair similarities. Our
relationship is a linear one, for any change in word, we expect that to have a
proportional change (of some kind) to another word. However, the Spearman
correlation is still a relevant metric to monitor, as it gives us a slightly more
noise-resistant method of gauging the relationship between our embedding
models and the SimLex-999 dataset.

3.2 Proposed Classification Model Architec-

ture

In our methodology, we propose to slice an entire article into individual sen-
tences, which can each be associated with a label dictating whether it is
from a pro-leave or pro-remain outlet (discussed more in depth in Subsec-
tion 2.1.3). While it is possible to use only statistical methods to automati-
cally categorise news texts into a political ideology by the properties of the
language used [48], this still relies on some labelled dataset with a similar
language style (i.e speeches from politicians, political manifestos), in the case
of this study we are able to use the EU referendum endorsements as a more
stable ground truth, as we are working entirely over the dataset that we wish
to analyse. Using the endorsements as a ground truth is also referenced in
our research questions, in Section 1.2 as RQ1. Using the endorsements in
such way allows us to focus more deeply on the framing bias used between
newspapers.

Due to the nature of the data that we are looking to analyse, recurrent
neural networks appear to be the most natural fit. This is backed up by re-
lated studies in political bias classification, most of which also resort to using
variants of recurrent neural networks [25] [35]. Due to the potentially large
variance in length of input vectors (as we are not looking to clip or transform
the input vectors to a certain dimension), recurrent neural networks allow us
to easily account for this due to their use of a recurrent hidden state, which is
passed through the network for each input x of an entire input vector X. It
has been shown that support vector machines are also a viable option of this
task due to the faster training time whilst maintaining a high accuracy [12],
however this is less ideal for our case due to the high variance in input se-
quence lengths. It could also be argued that taking a non-neural network
based approach would be more suitable for this task, due to the inherently
finite amount of articles published in the year leading up to the EU refer-
endum vote (due to neural network architectures traditionally needing high
amounts of labelled data to work most effectively). With this in mind, com-

CHAPTER 3. METHODS 47

paring the performance would be an ideal point of research beyond what has
been done in this paper, as it would contribute to finding out which model
architecture yields the highest accuracy in classifying the political bias of
news articles (RQ3 as shown in Section 1.2).

Ultimately, creating a predictor in this way will allow us to feed in ar-
bitrary unlabelled sentences for testing. We could split up an article (or
a selection of articles) reporting on the EU referendum campaigns and our
model will give us a series of predictions on their stances. We can then aggre-
gate over these to create an average bias weighting for an article, or outlet.
This will allow us to answer our research question 2 as defined in Section 1.2,
as we will be able to feed in supposedly unbiased outlets, such as the BBC,
and we will be given an estimate of their political bias with relation to the
EU referendum vote.

3.2.1 GRU & LSTM

Due to our input data being sentences plucked from news articles (i.e each
period acts as a delimiter in our data), we have potentially very long input
sequences to be fed into our neural network. This puts us at a high risk of
suffering from vanishing gradients (as described in Section 2.2.5.2). For us
to be able to mitigate this, utilising gates to maintain the relevance of long
term dependencies is an important area to compare and contrast. To this
end, we propose to use the Gated Recurrent Unit, and the Long Short-Term
Memory Unit as focal points for our RNN architecture.

Within this subdomain, we propose to test varying hyperparameter con-
figurations, in an attempt to see which approach yields the highest accuracy,
and the shortest period of time in which to train (that is, the shortest time
it takes for the model to converge). These tested parameters will be:

• Batch size:
Increasing the batch size would decrease the time taken in which to
cover a single epoch over the dataset. However, by increasing the batch
size, we have less samples to be used for backpropagation calculations,
which can lead to higher overall training times, due to a slower rate of
convergence.

• RNN hidden size:
Increasing the hidden size of the recurrent layer increases the potential
for modelling complex relationships within the data. However, this
also increases the risk of overfitting, which has the potential to become
more of a problem as the input sequence length increases.

CHAPTER 3. METHODS 48

• Dropout percentage:
Introducing dropout allows us to regulate the flow of information through
our network (as shown in section 2.2.4.3). This allows us to decrease
the risk of overfitting, but if we set this to be too high, we may begin
to drop important parts of our learned model, and so decreasing the
overall accuracy of the learned weights.

• Number of RNN layers:
By “stacking” RNN layers, we increase the quantity of learned weights
by effectively feeding the outputs from one RNN layer into another
RNN layer. This offers a way in which to increase the learning potential
without increasing the overall width of each layer. Similar to increasing
the hidden size, this also introduces a risk of overfitting in our model.
Stacked recurrent neural network architectures are explained more in
depth in Section 2.2.5.5.

In addition to these quantity-based metrics of tuning hyperparameters,
we will also place a focus on utilising bidirectional RNNs (described in Sec-
tion 2.2.5.6), to see if this yields better results is representing long term
dependencies in our input data. This will also be tested alongside a tail
concatenation approach (showcased in Figure 2.14) which serves as a way
of taking the most important features of the learned weights at each end of
the bidirectional RNN. This, in theory, should be an approach that allows
us to even more effectively model long-term dependencies, without needing
to increase the hidden size or stacking many different RNN models together.
But, this runs the risk of not being an effective approach (due to the tradi-
tional gated RNN architectures being sufficient in preserving these long term
features).

Next, we will compare varying similar optimisation functions described
in Section 2.2.4.2. The analysed algorithms will be SGD, SGD with momen-
tum, Adagrad, Adadelta, RMSProp and Adam. All of these algorithms will
be calculating the gradients on minibatches to improve training times, but
SGD takes a noticeably more simple approach with a predefined unchanging
learning rate, η, whilst the other algorithms are slight variations on ways to
adaptively update the learning rate based on the direction and momentum
of the loss function.

Finally, we will also compare and contrast the strengths and weaknesses
of using the GRU versus the LSTM in this domain. We expect to see similar
results due to the similarities in architecture (both described and shown in
depth in Section 2.2.5). Due to the slightly simpler architecture of the GRU,
we may see that it takes less time to converge than the LSTM. However, the

CHAPTER 3. METHODS 49

LSTM may be able to capture long term dependencies more effectively due
to it’s use of a designated cell state, Ct.

3.2.2 Loss Calculations

Due to the nature of our problem being a binary classification task, we pro-
pose to use a binary cross entropy loss, following a sigmoid activation in
our network in order to calculate the error for our model (this is shown in
Section 2.2.4.1).

3.3 Performance Metrics

Finally, we want to be able to measure the effectiveness of our trained model,
we will do this via a number of criteria:

• Precision/Recall:
The precision/recall matrix builds upon the accuracy, but instead gauges
the quality of a model based on how often it classifies each case cor-
rectly. We can define precision as follows:

Precision =
TP

TP + FP
. (3.3)

The precision tells us: “out of how many of our positive classifications,
what percentage of those were true positives?”. This lets us know how
often our model is correctly classifying our positive cases.

We can define the recall as follows:

Recall =
TP

TP + FN
. (3.4)

The recall tells us: “Out of our positive labels, how many of these
were correctly classified by our model?”. This tells us how effective our
model is at covering the entire search space. We want to find a model
that is able to maximise both precision and recall — we can do this
by plotting the precision/recall values for each of our proposed models
and use this to help us determine the most effective one.

• Accuracy:
When training our model, we will partition our data in to training,
validation and test sets (this will be split into 70:20:10 partitions by

CHAPTER 3. METHODS 50

ratio). We will extend the precision/recall values calculated and use
these to calculate the F1 score for the given model. This is defined as
follows:

F1 Score = 2 · Recall · Precision
Recall + Precision

. (3.5)

This is effectively a weighted average of our precision and recall values.
This gives us a value which takes into account both false positives and
false negatives, giving a more accurate summary of the quality of our
model.

• Time to converge:
We will also consider our model to be performant based on the num-
ber of epochs needed before our model converges to within a certain
threshold value. We care about this because whilst we are currently
working over a small dataset (so more epochs does not present much
of an issue), we would like this approach to be scalable to much larger
sets of data, and so a faster time to converge is a desirable feature.

3.3.1 Comparison to Naive Bayes

In this study, we will also employ the use of a Naive Bayes (summarised in
Section 2.2.1) to serve as a point of comparison between a (potentially deep)
recurrent neural network and a more simple method of classification. Here
we will observe the time taken to train the model, which is expected to be
much lower for a more simple method, but we expect the performance of the
Naive Bayes to trail that of the more complex model architectures. This is
due to the fact that Bayes Theorem (Equation 2.1) makes the assumption
that all input features are mutually exclusive. That is, no input feature xi
has influence over input feature xj. When the input vector X is a sentence
of individual words xi, we know that this assumption does not hold.

Chapter 4

Environment & Implementation

4.1 Data collection

For our training data, we retrieved articles relating to the 2016 UK referen-
dum on its EU membership in a one-year time period leading up to the vote
itself (i.e all articles within the dates 2015-06-23 to 2016-06-23). Since the
referendum itself was brought into law by the British parliament after the
Conservative victory in the 2015 General Election with the introduction of
the European Union Referendum Act of 2015 [34], we can assume that all
articles pulled from this period of time are not speculative about a vote, but
speaking about a concrete referendum vote that will be taking place on a
given date.

4.1.1 Tools Used

To collect the articles, a software-as-a-service platform called EventRegistry
was used [6]. This service offers a News API that allows for querying of arti-
cles from over 30,000 publishers. Within this API, we were able to query for
all news articles in English, that were relating to the 2016 UK EU referen-
dum vote (this was based on a “Concept URI” which links to the Wikipedia
page for this topic [43]). We also place a filter on our search such that all
results are quantified as “news”. Next, we are able to specify the sources that
articles are pulled from. For this, we associated each media outlet with its
equivalent news website (for example, The Daily Mail would be associated
with the website dailymail.co.uk).

Using these methods, a total of 5232 articles were pulled. Each of these
articles was then given a label of 0 or 1 (each denoting pro remain, or pro leave
respectively according to the newspapers endorsements given, showcased in

51

dailymail.co.uk

CHAPTER 4. ENVIRONMENT & IMPLEMENTATION 52

Section 2.1.3). At this point we then pass our data along to be processed
and used for training our model.

4.1.2 Flaws & Assumptions Surrounding Data

For this data collection, an amount of trust is placed in our source to supply
fair and truthful data. It could be possible that some sources are missed due
to how the articles are collected by EventRegistry. Furthermore, we exercise
trust in the filters that are used in querying serve their purpose accurately,
such that the “news” filter does indeed ensure that all results qualify as
“news” and not opinion pieces etc. In the same vein, we are trusting that all
articles categorised as ones reporting on the 2016 EU referendum vote in the
UK are in-fact reporting on that topic. If such articles were returned from
our query that were not on this topic, it could pose a risk to the quality of
model that was created.

Another possible issue with respect to our data is a potential lack of
it. It could be possible that the utilising neural networks with a dataset
of 105024 sentences does not allow for our model to accurately learn the
semantic relationships that form framing bias in news articles in this domain,
resulting in a low accuracy. An approach to solving this would be to use a
different method of machine learning that does not rely as heavily on high
amounts of labelled data, such as support vector machines. This could be
used as a further point of study (as described in Section 6).

4.2 Data processing

Before the articles can be fed into the neural network, We would need to
create the Word2Vec word embeddings so that the network can vectorise
each term, to then be fed into the recurrent neural network layer. These
embeddings were created using the Gensim utility library for Python [7].
For each of the articles, we would take it’s body (i.e the headline would not
be used) and we would preprocess it. This preprocessing would remove all
accents from letters, lowercase all words, and return an vector of tokens,
which can be used for embedding.

Once the corpus is tokenised and embeddings have been created, we can
then feed this into the network. The model is created using PyTorch [9] and
has been trained locally on a Linux workstation.

Chapter 5

Evaluation & Discussion

5.1 Results

For our dataset, we queried the EventRegistry [6] to retrieve all articles re-
lating to the EU referendum vote, within a one-year timeframe leading up to
the referendum date. Exact parameters for the querying can be found in Fig-
ure 5.1. We repeated this query for each of our sources (theguardian.com,
ft.com, mirror.co.uk, inews.co.uk, independent.co.uk, thetimes.co.uk,
dailymail.co.uk, thesun.co.uk, express.co.uk, telegraph.co.uk).

After running the following expression for each source, and collating data
into a single CSV file, we are left with 5232 articles in total. After each of
the articles has been split down into individual sentences and given a class
label (either pro-brexit or pro-remain), we are left with a total of 101415
sentences with a label of pro-leave, and 73430 sentences with a pro-remain
label. Due to the imbalance of class label distribution in our data, we apply
a weight vector to our loss function (explained in Section 2.2.4.1) for positive
classifications.

Due to the finite nature of the dataset (as it is not possible to pull more
data from further backwards in time, as the referendum vote hadn’t been
announced at that point) we are left with a lack in data points to be fed
into the network. This introduces potential issues such as higher risk of
overfitting when training the classifier and lower quality embeddings due to
less frequent appearances of certain terms.

5.1.1 Word Embeddings

For each of the models, we trialled a range of hyperparameters from prede-
fined sets, and measured the loss on each combination of possible options.
Our parameter ranges are showcased in Table 5.1.

53

CHAPTER 5. EVALUATION & DISCUSSION 54

q = QueryArticlesIter(

conceptUri=(

‘http://en.wikipedia.org/wiki/’

‘United_Kingdom_European_Union_membership_referendum,_2016’

),

sourceUri=sourceUri,

categoryUri=‘news/Politics’,

dataType=‘news’,

dateStart=‘2015-06-23’,

dateEnd=‘2016-06-08’,

lang=‘eng’,

isDuplicateFilter=‘skipDuplicates’,

)

Figure 5.1: The Python expression used for building a query to retrieve
news article data on the European Union referendum, within the selected
timeframe. The sourceUri variable is changed to be for each data source
domain. For example, to collect article data from the Daily Mail, we would
set sourceUri to be www.dailymail.co.uk

Each possible permutation was run for ten iterations with a starting learn-
ing rate of 0.025, decreasing to a minimum of 0.0001, and the resulting model
was saved if it produced a new “record” loss value.

In Table 5.1, we can see that there is a large difference in optimum loss
values for each implementation. This is due to the differing loss functions for
each variant. When calculating skip-gram embeddings, we calculate loss as
the likelihood of a series of zzwords wt+j appearing in a training context of
size c surrounding a given word wt. This is inverted for continuous bag-of-
words approach, where we are gauging the quality of the model by its ability
to guess a most probable term y given a series of one-hot encoded context
words x1, . . . , xC .

We can also see in Table 5.1 that a similar set of hyperparameters have
been selected as optimal by both implementations. Both approaches choose
a context window of 3 words to be ideal. This could be due to that the
probability of a given word appearing with a chosen series of context words
is easier to maximise on a smaller set of context words, given the smaller size
of the input dataset.

In Figures 5.4 and 5.5 we are able to see that the best performing models
(in terms of training loss) are also the best performing when taking the Pear-
son coefficient against the SimLex-100 [21] semantic similarity dataset (with

CHAPTER 5. EVALUATION & DISCUSSION 55

Figure 5.2: A showcase of individual test input sentences fed into a trained
classifier. Shown is the corresponding indexes for the input sentences, which
are used to convert the terms to embedding vectors which are fed into the
RNN layer. Then, the generated output is shown as a confidence value (i.e
the direct output of a sigmoid activation on the output of the hidden to
output linear layer), and a rounded “guess” of this confidence scalar. The
following image is taken using the CBOW model with lowest loss, shown in
Table 5.1.

CHAPTER 5. EVALUATION & DISCUSSION 56

Figure 5.3: A showcase of some common topic-related individual input words,
with an output of the top 10 terms that have the highest cosine similarity
(shown in Equation 2.26) with the input. The following image is taken using
the CBOW model with lowest loss, shown in Table 5.1.

Figure 5.4: Two bar charts representing the final loss value from the four
best performing combinations of hyperparameters (that is, the combination
of hyperparameters resulting in the lowest loss value) for CBOW and Skip-
Gram effectively. The hyperparameters are shown as labels on the x axis,
where ‘win’ corresponds to window/context size, ‘min’ corresponds to mini-
mum word count required to be included in embedding, ‘size’ corresponds to
embedding vector size, and ‘neg’ corresponds to number of negative samples
taken when using negative sampling for Skip-Gram.

CHAPTER 5. EVALUATION & DISCUSSION 57

Figure 5.5: Two bar charts representing the SimLex-999 similarities with
the four best performing combinations of hyperparameters for CBOW and
Skip-Gram over the news article dataset. Similarities are scored by both the
Pearson and Spearman Coefficients.

CHAPTER 5. EVALUATION & DISCUSSION 58

Figure 5.6: Two scatter graphs showing the optimal embeddings for CBOW
and Skip-Gram respectively, mapped in a two dimensional space using t-
distributed stochastic neighbour embeddings for dimensionality reduction.

CHAPTER 5. EVALUATION & DISCUSSION 59

Parameters Tested Values

Training Model Type Skip-Gram, CBOW
Context Window Sizes 3, 5, 7
Minimum Word Counts 1, 5, 10

Embedding Dimension Sizes 50, 100, 300
Quantity of Negative Samples (if Skip-Gram) 3, 5, 7

Table 5.1: All of the possible values that were used in the training process of
the embedding weights. Each of the parameters is explained more in depth
in Section 3.1.

Parameters Parameter Value

Training Model Type Skip-Gram CBOW
Context Window Sizes 3 3
Minimum Word Counts 5 10

Embedding Dimension Sizes 100 100
Quantity of Negative Samples 3 —

Loss 16629545 4832437

Table 5.2: Combinations of hyperparameters that resulted in the lowest train-
ing loss value for skip-gram and continuous bag-of-words, from experiments
conducted over differing permutations of parameters shown in Table 5.1

the exception of the win3-min1-neg3-size100 skip-gram embedding per-
forming worse than the win3-min5-neg3-size50 embedding, despite having
a lower training loss). Due to this linear relationship between training loss
and correlation coefficients, we can assume that the embeddings for both
skip-gram and CBOW are indeed optimal for this specific domain. Fur-
thermore, compared to the 0.282 Pearson correlation for a Word2Vec model
over 150m total tokens using the RCV1 Reuters news corpora [28], an opti-
mal skip-gram result of 0.199 indicates that our model can be considered an
acceptable approximation of semantic relationship between general (i.e not
specific to the political domain) terms.

In Figure 5.6, we take the optimal embeddings for each Word2Vec variant
(shown in Table 5.1) by utilising t-distributed stochastic neighbour embed-
dings (known as t-SNE), a method of dimensionality reduction, used partic-
ularly when attempting to visualise high dimensional data. t-SNE performs
nonlinear transformations on different areas of the data, with the use of a
perplexity parameter. It does these nonlinear transformations to aim to pre-
serve local structure within the data, meaning that it gives more precedence
to relative distance between data points, rather than the overall structure.
The perplexity parameter allows for the a level of weighting with respect

CHAPTER 5. EVALUATION & DISCUSSION 60

to local vs. global aspects shown in the data. In the scatter graph for the
CBOW embeddings, we are clearly able to see more explicit clustering of
similar terms. This tells us that the CBOW approach is more aggressive
than Skip-Gram in terms of putting similar words in our corpus into similar
embedding vector ranges. This could yield a benefit when using these em-
beddings for textual classification, as more “opinionated” embeddings may
grant additional exposure to certain politically bias heavy features in our
training data. However, this may come at the sacrifice of higher quality em-
beddings (which is reinforced by our SimLex Pearson similarity coefficients
across models). The Skip-Gram model shows a much more even distribution
of terms across the value spectrum, with only small vague clusters visible in
the graph. However, this may be emphasised by the fact that there is more
raw data included in the Skip-Gram visualisation, due to the minimum count
being only 5 for the Skip-Gram model, as opposed to 10 for the CBOW em-
beddings. This visualisation shows there is more potential to find complex
relationships between terms, but this may be made more difficult be a less
obvious term-based clustering of data, which will be used to represent our
terms as vectors in our RNN layer.

In summary, in our analysis of creating vector representations of terms
in our corpora using Word2Vec has given rise to two sets of hyperparame-
ter configurations that result in the highest quality embeddings (both shown
in Table 5.1). Whilst the CBOW embeddings resulted in much lower loss-
value at training times, this can be attributed to the different loss functions
between each implementation. When checking our best performing embed-
dings against a “gold standard” method of semantic representation quality,
SimLex-999, the Skip-Gram models showed a more accurate understanding
of general word relationships than the CBOW trained embeddings. Due to
these factors, we choose to take the Skip-Gram model forward as our primary
embeddings when training the classification model.

5.1.2 Classification Model

5.1.2.1 Experimentation process

For the experimentation process, a Pytorch [9] model was created that
allowed for convenient tuning of hyperparameters. The choices of possible
values of hyperparameters was done so in a less structured way than for the
training of the Word2Vec embeddings (shown in Table 5.1), due to the sheer
number of potential permutations of hyperparameters. Rather, a manual
process was employed where a small number of hyperparameters would be
changed each time, when training a new model (as shown in Figure 5.7).

CHAPTER 5. EVALUATION & DISCUSSION 61

def train_with_defaults():

hyperparameters = {

’epochs’: 15,

’learning-rate’: 0.0001,

’hidden-size’: 64,

’dropout’: 0.8,

’batch-size’: 64,

’num-layers’: 2,

’bidirectional’: False,

’embed-file’:

’model-to-be-tested.model’,

’data-file’: ’data/all-articles.csv’,

’optimiser’: ’adagrad’,

’rnn’: ’lstm’,

}

model, w2v_model, results = train(*hyperparameters.values())

should write to text file hyperparameters

out_file =

f’models/{time.strftime("%Y-%m-%d--%H-%M-%S")}--{results["f1"]}’

torch.save(model.state_dict(), out_file + ’.pt’)

logging.info(f’Model trained and saved to {out_file}.pt’)

params_file = open(out_file + ’.json’, ’w’)

json.dump({**hyperparameters, **results}, params_file, indent=4)

logging.info(f’Hyperparameters saved to {out_file}.json’)

return model, w2v_model, results

train_with_defaults()

Figure 5.7: A sample of code showcasing the invocation of the RNN subrou-
tine with differing hyperparameters. After each training, the model would
be saved to a file with a corresponding JSON file containing the hyperpa-
rameters and the accuracies over the training, validation and test data for
the given model.

CHAPTER 5. EVALUATION & DISCUSSION 62

Due to this manual hyperparameter tuning process, it is unlikely that an
optimal configuration of hyperparameters was achieved. This could perhaps
have been improved by employing the use of a program to automatically tune
hyperparameters.

For each model that was trained, the F1 score (As outlined in Section 3.3)
was used as the primary metric for discerning higher performing models from
lower performing ones. However, precision and recall values were also taken
into account due to their ability to expose potential flaws in certain mod-
els. Finally, while time to convergence was not formally taken into account,
hyperparameter values that resulted in lower training times were preferred,
such as keeping the number of layers to less than five, and favouring single di-
rectional RNNs rather than their bidirectional counterparts. The number of
epochs was kept static throughout the training process, as 15 epochs seemed
to provide each model enough time to converge around a given set of model
weights.

After selecting the four best performing models based on F1 score, these
models were further scrutinised by runing predictions over individual news
outlets. In this process, we used The Daily Mail and The Guardian as test
data, as these each represent (intuitively) pro-leave and pro-remain senti-
ment, respectively. The BBC was also supplied as an intuitively neutral
outlet. For The Daily Mail and The Guardian, the model was given to pre-
dict the data from each news source that was also used in training. Since this
data was used in training, the model would be expected to quite accurately
predict the political leaning of each sentence (if we are to assume that each
newspaper produces biased content at a sentence level, that is differentiable).
We also then supply a new sentence vector for the model predict contain-
ing similar sentences, but over a more recent time period than was used in
training. Since this would then be, in effect, “true” test data, this would
serve as a point of comparison as to whether the models bias predictions are
consistent within newspapers, but across periods of time.

Furthermore each of these models would be compared against a more
simple approach to sentence classification. In this case, a Naive Bayes model
was created over the same data, to serve as a point of comparison between
the RNN models created and a more simple approach. This allows for me-
thodical analysis of the usage of RNNs as a whole for the use case of sentence
classification for newspaper political bias.

5.1.2.2 Results

After experimenting with different possible hyperparameter configurations,
four RNN models were settled upon as being the best performing based on

CHAPTER 5. EVALUATION & DISCUSSION 63

F1 score alone. Figure 5.8 shows the results of our core performance met-
rics for determining the quality of a model across our RNNs, along with
results from a Naive Bayes model. Here we are able to see that the model
lstm-rmsprop-h64-l2 produced the highest F1 score across all tested hyper-
parameter permutations. The hyperparameter configurations for this model
(and the other best performing RNNs) can be found in Table 5.3.

It is clear from the results that the high F1 score generated from the
lstm-rmsprop-h64-l2 model is due to the disproportionately high precision
(explained more in detail in Section 3.3), as the recall and general accuracy
over the test set were the lowest out of our best performing models.

We can also see from the data shown in Figure 5.8 that a Naive Bayes ap-
proach is capable of generating similar quality results to a more complicated
neural network architecture. These results do not seem to be disproportion-
ately weighted (as seems to be the case with lstm-rmsprop-h64-l2). This
indicates that the naive bayes approach also creates consistent results when
making predictions over test data.

Model Name RNN Type Optimiser Batch Size

lstm-rmsprop-h64-l2 LSTM RMSProp 64
lstm-adam-h64-l2 LSTM ADAM 64
lstm-adam-h128-l2 LSTM ADAM 64
lstm-adam-h64-l1 LSTM ADAM 64

lstm-adam-h128-l2-drop LSTM ADAM 64

Model Name Learning Rate Bidirectional Epochs

lstm-rmsprop-h64-l2 0.0001 False 15
lstm-adam-h64-l2 0.0001 False 15
lstm-adam-h128-l2 0.0001 False 15
lstm-adam-h64-l1 0.0001 False 15

lstm-adam-h128-l2-drop 0.002 False 10

Model Name Hidden Size Number of Layers Dropout

lstm-rmsprop-h64-l2 64 2 0.8
lstm-adam-h64-l2 64 2 0.8
lstm-adam-h128-l2 128 2 0.9
lstm-adam-h64-l1 128 1 0.9

lstm-adam-h128-l2-drop 128 2 0.4

Table 5.3: Above showcases some of the best performing RNNs and their
parameter configurations. Each parameter is explained more in depth in
Section 2.2. Each model used the Skip-Gram embeddings with the lowest
loss value, as shown in Table 5.1

CHAPTER 5. EVALUATION & DISCUSSION 64

Figure 5.8: A showcase of some common topic-related individual input words,
with an output of the top 10 terms that have the highest cosine similarity
(shown in Equation 2.26) with the input. The following image is taken using
the CBOW model with lowest loss, shown in Table 5.1

CHAPTER 5. EVALUATION & DISCUSSION 65

Table 5.3 gives the full list of hyperparameters and their given values. We
can see that all of the best performing models favoured more simple architec-
tures; The highest quantity of layers in a model across the best performing
set is two, and three out of the four best performing models favoured a hidden
layer size of 64 (hidden layer sizes up to 512 were tested). However, contrary
to this, all of the best performing RNN models favoured the slightly more
complicated LSTM over the more simple GRU RNN architecture. While
this is counter to the belief that all of the best models were found using
the most simple permutations of hyperparameters, it does expose the fact
that the best performing models are very similar in architecture, with min-
imal changes between each. This highlights that results were consistent on
the best performing groups of hyperparameter configurations. Furthermore,
none of the highest performing models were bi-directional, even after utilis-
ing mean-pooling (described in Section 2.2.5.6) in order to more effectively
manage long term dependencies in the network.

Model Name Guardian Guardian 2019

lstm-adam-h64-l1 0.4438 0.4658
lstm-adam-h128-l2 0.4487 0.4743
lstm-adam-h64-l2 0.4742 0.4964

lstm-rmsprop-h64-l2 0.5171 0.5175
naive-bayes 0.4138 0.5289

Model Name Daily Mail Daily Mail 2019 BBC

lstm-adam-h64-l1 0.5827 0.5831 0.5263
lstm-adam-h128-l2 0.6072 0.6073 0.5457
lstm-adam-h64-l2 0.6054 0.6029 0.5525

lstm-rmsprop-h64-l2 0.5166 0.5171 0.5168
naive-bayes 0.8336 0.7475 0.6581

Table 5.4: The above figure shows the predicted biases for differing media
outlets, using the same data used in training, and more recent data, collected
in the same way outlined in Section 4.1, but over a one month period in
September 2019. A result of 0 would correspond to a unanimous series of
pro-remain predictions, while a result of 1 would correspond to a unanimous
series of pro-leave predictions.

In Table 5.4 we are able to see the predicted biases of the best per-
forming models. Here we are able to expose more clearly the flaws with the
lstm-rmsprop-h64-l2 model: based on the predictions shown in Table 5.4 it
has converged on predicting very similar biases for all input data. This could
be due to a low number of positive classifications when training, but out of

CHAPTER 5. EVALUATION & DISCUSSION 66

these positive classifications, many were correct. This would result in a high
precision, but would leave the possibility for a low recall (as is the case, shown
in Figure 5.8). To this end, we can say that while lstm-rmsprop-h64-l2 has
a high F1 score, it seems to have converged on a local maxima that renders
it unusable on anything outside of the test data. In addition to this, this
allows us to assume (within the our own trained models) that the ADAM
optimiser yields the best results in this case. The usage of adaptive learn-
ing rates allows for our training process to more slow down learning rates
when approaching a global accuracy maxima. This is reinforced by the fact
that the only other optimiser that is present in our best performing models
also utilises adaptive learning rates (RMSProp), albeit in a more simplified
way than with ADAM which utilises adaptive moment matrices for velocity
calculations.

Based on this we can see that lstm-adam-h128-l2 yielded the best results
when giving concrete predictions over real world data (in addition to F1 score
alone). This model was accurately able to provide similar predictions of
political bias for the same newspapers across time periods. Since this model
was the only one out of our top performing models with a hidden layer size
of 128 (and with two stacked layers), we could potentially say that the added
ability to classify political bias can be down to the create weight vector size,
giving the model a greater ability to represent more complex relationships in
the training data.

Next, we can see that the Naive Bayes model (summarised in Section 2.2.1)
gives strong predictions for the data that was used in training, giving the
Daily Mail data used in training a 0.8336 in likelihood of possessing a pro-
leave bias. While this is to be expected, the consistent results also hold up on
subsequent data that was not used in training. A 0.7475 average prediction
for pro-leave bias in 2019 Daily Mail data shows not only that the Naive
Bayes model is able to accurately predict biases in data not used in training,
but it also showcases that there are bias links that persist across time. This
reinforces the idea that we are able to classify news outlets by political lean-
ing, when utilising the newspapers’ own explicit political endorsements as a
ground truth. However, it was not expected that the Naive Bayes approach
would result in a higher F1 score and more consistent results than many of
the highest performing RNN models. This is due to the fact that Bayes The-
orem 2.1 makes the assumption that all of the input features are independent
of each other, which is not the case when working over sentences containing
words that each influence each other.

CHAPTER 5. EVALUATION & DISCUSSION 67

Figure 5.9: The progression of validation set accuracy in a selection of trained
models.

5.2 Analysis

5.2.1 Simpler RNN Architectures Are Favoured

In Table 5.3 we show a model named lstm-adam-h128-l2-drop which is sim-
ilar to other highest performing models, but instead has a much lower rate of
dropout (at 0.4). In Figure 5.9 We can see the model lstm-adam-h128-l2-drop
struggle to improve on loss over the test data. However, the training set ac-
curacy for this model increased from 0.5352 to 0.5810 over the course of the
training process. This disparity between the training and validation set ac-
curacies show that there was a problem with this model during training. It is
likely that this model was prone to overfitting, and so was in need of higher
amounts of regularisation.

We can also see in Figure 5.9 that increasing the size of the hidden layer
does not necessarily result in a lower loss value over the validation set when
training. This could possibly be due to limitations in the data; the combina-
tion of a relatively small amount of data (with only 5232 articles used in the
training data) and the ground truths labelling applied over large sets of data
without pconsidering writing style from the outset gives a higher likelihood

CHAPTER 5. EVALUATION & DISCUSSION 68

of a concrete ceiling in terms of model accuracy. For this reason, a simple
model (with a lower number of layers, higher dropout and lower hidden size)
could be just as likely to achieve good results, while also being less prone
to overfitting. This theory is backed up in Table 5.4 where the models that
gave the best predictions over new data were the most simple ones.

5.2.2 Potential Missed Opportunities

Each of the best performing models were manually tested against individual
news outlets to assess the quality of their bias predictions. This was expanded
by also testing the models against data that was not included in the original
training set. This allows us to more confidently extrapolate the findings of
a certain model. For example, if a model is able to correctly predict the
Daily Mail has a pro-leave bias in datasets from 2016 and 2019, then this
gives more credibility to the model. However, the testing of the unbiased
news source, the BBC, was only against the data that was included in the
training data. For this reason, it gives us less confidence to state concretely
that the BBC possesses a bias that is more sympathetic to pro-leave policies
and philosophies.

Next the usage of automatic hyperparamter tuning via an external service
would have allowed for more accurate optimisation of hyperparamters. For
example, the learning rate of 0.0001 remained static throughout much of the
training process, due to this being the default learning rate for the ADAM
optimiser in the PyTorch library. However, tuning this paramater (amongst
others) might have given the opportunity to yield better results. Due to
the high number of tunable hyperparameters, this would not be possible
manually (or would take a long period of time), but automation of this task
would be possible.

5.2.3 Flaws in Results

For one of the best performing models, lstm-adam-h64-l1, a dropout of
0.9 is used. However, due to the fact that dropout requires a network with
more than one layer to have any effect (Dropout regularisation is described
in Section 2.2.4.3) this dropout value is redundant.

5.3 Revisiting Research Questions

In Section 1.2 we posed three questions that we would aim to answer through-
out the course of this study. Here we will revisit each RQ and concretely draw

CHAPTER 5. EVALUATION & DISCUSSION 69

conclusions based on the collected data:

5.3.1 Predicting Political Bias in Print Media

All of the highest performing models generated were able to correctly identify
the political leaning of a given newspaper, even when given data that is from
outside of the time period in which the model was trained. This means that
not only are the generated models able to determine political bias in various
news outlets, this model can also be used over slightly different sets of data,
while still yielding similar results.

Conversely, for The Daily Mail (widely considered to be one of the most
explicitly Pro-Leave media outlets in the UK), the best performing RNN
model was only able to predict a Pro-Leave bias with a score of 0.6072, where
a score of 1 is entirely Pro-Leave, and score of 0 is entirely Pro-Remain. This
shows that there are many potential gains to be made with a model such
as this. The potential for improvements is also highlighted by the higher
prediction scores for the same dataset when using a Naive Bayes model,
which gave a score of 0.8336.

Furthermore, it is not possible for us to conclude that since we are able to
place newspapers into a binary classification, that this is due to the political
bias that is present in each. It is plausible that the differentiating factor
between each newspaper is simply down to the different writing styles in
each outlet. This philosophy is reinforced by the high scores generated by
the Naive Bayes model, which favours a more simple approach (which is not
considering long term dependencies and complex relations within sentence
structure).

To summarise, we are able to differentiate newspaper articles into a bi-
nary classification that corresponds with the explicit endorsements given by
each newspaper. This means that it is possible that our models are able to
classify sentences based on political bias, but it is also possible that they are
differentiating news outlets by writing style and sentence structure, which
also aligns with the EU referendum endorsements provided by each outlet.

5.3.2 Predicting Political Bias in Unbiased Media

From the models that were created, each model gave subtle, yet consistent
results on the political biases in supposedly unbiased media (in this case, the
BBC). The Naive Bayes model gave the highest prediction score of 0.6581
likelihood of possessing a pro-leave bias, and the lowest prediction score of
0.5168 from the lstm-rmsprop-h64-l2 also indicates a slightly pro-leave
bias.

CHAPTER 5. EVALUATION & DISCUSSION 70

This would imply that from our study, we can say that it is possible that
the BBC gave opinions that were more inline with a pro-leave philosophy,
than a pro-remain one over the course of the year leading up to the EU
referendum vote in 2016. However, the potential issues from the previous RQ
remain: it is plausible that the writing style of the BBC is more in line with
newspapers such as The Daily Mail, which does not explicitly correspond to
a pro-leave philosophy.

Due to the above points, we are able to conclude that while our models are
able to indicate a leaning of some kind from the BBC that aligns with a pro-
leave philosophy, it is difficult to make the conclusion that this is explicitly
due to a political motive that is present in the BBC’s print media.

5.3.3 The Best Performing Model for Determining Po-
litical Bias

Based on the Figure 5.8 we can see that the highest performing model based
on F1 score alone is lstm-rmsprop-h64-l2 (hyperparameter configuration
can be found in Table 5.3). However, as described in Section 5.1.2.2, due
to the low precision and test set accuracy, as well as the low concrete per-
formance when predicting political biases over news outlets with explicit
political endorsements (Shown in Table 5.4), we can see that this model does
not perform as expected in a real-world scenario.

Due to this, the next best performing model (based on our performance
criteria) is the Naive Bayes model. The Naive Bayes model has been able to
generate a high F1 score, and has a high prediction accuracy compared to the
vastly more complex RNN models. This could be due to a lack of training
data, which makes the generated RNN models more prone to overfitting, and
so they rely on low numbers of hidden layers and high amounts of dropout,
which reduces the amount of complexity that can be learned by the networks.
Furthermore, the Naive Bayes is able to train in a much shorter period of
time due to its simplicity (outlined in Section 2.2.1).

Outside of the Naive Bayes approach, the best performing RNN model is
the lstm-adam-h64-l2 model, which achieved a comparable F1 score to the
Naive Bayes model, and was able to correctly predict the explicit political
biases of certain newspapers, but was much more expensive to compute than
the Naive Bayes, and it didn’t give as confident predictions of newspaper
biases as the Naive Bayes model (from the data shown in Table 5.4).

Chapter 6

Conclusions

In this thesis we highlighted the need for a way to determine political bias in
the traditional British print media. This has been reinforced by studies that
showcase the lack of trust [2] and the perceived political bias [8] in the British
newspapers. It has also been shown that the print media has potential to have
a large impact on the opinions of their readership [42], which highlights that
the political bias prevalent in the British newspapers has potentially a very
tangible impact on the voting patterns at general elections and referendums.

In any form of print media, some levels of bias are almost certainly un-
avoidable. This can range from whether the story gets covered by the media
outlet at all (known as selection bias), to the explicit opinions of the person
who wrote the article (known as statement bias). In this thesis, we decided
to focus on framing bias, which is the way in which facts are conveyed to the
reader. The words that are chosen, the sentence structure, and the intona-
tion of the sentences themselves have the potential to have a large impact
on opinions formed by the reader. We decided to focus on this type of bias
as this is not something that is somewhat subconciously processed by the
audience. There is an element of inherent trust between the reader and the
media outlet in that the facts that are relayed to the user are done so in a
trustworthy manner, without being framed in a certain way so as to push a
political agenda. Some outlets, such as the BBC, go as far as to avoid poten-
tial biases by adding it to their code of conduct [1], pledging to the reader
that any information conveyed is done so in a way that will not push them
towards certain ideologies or political parties. However, due to the subtle
nature of framing biases, it is possible that this is not actually the case. In
this paper, we set out to determine if these supposedly unbiased outlets do in
fact convey small amounts of bias in the way that their articles are framed.
Furthermore, in the openly political biased outlets, can we confirm this bias
in the way that their news articles are conveyed to the reader?

71

CHAPTER 6. CONCLUSIONS 72

Within this domain, we decided to focus on the 2016 referendum of the
membership of the UK in the EU as a focal point for determining this political
bias, due to the explicit endorsements that newspapers provided, urging their
readership to vote in a certain way [27]. This provides us with a ground truth
that can be used to confirm or determine political bias in other articles that
also reported on this topic. The bias that we set out to detect was done
so as part of a binary classification. We would partition all of the articles
covered into pro-leave or pro-remain, and use these to perform a classification
of either pro-leave or pro-remain on subsequent articles.

To achieve this goal, we turned to recurrent neural networks and vari-
ations upon them. It was opted to go in this direction due to the ease of
processing sequences of undefined lengths (which would be common in a clas-
sification task that works over articles of varying sizes). This decision was
also reinforced by their usage in related studies [35] [48] [25]. Furthermore,
we decided to focus on the gated recurrent units and long short-term mem-
ory units, as these have a proven track record of being able to pick up the
major pitfalls of traditional RNN models, more specifically management of
long-term dependencies.

We also looked to compare different methods of creating vector represen-
tations of terms to be used in our classification tasks. For this we turned to
the popular Word2Vec [30] algorithm as a basis for this task. Within this, we
sought to compare the effectiveness of the two variants of Word2Vec, skip-
gram and continuous bag-of-words. For this we aimed to find a combination
of hyperparameters that resulted in the highest accuracy over our corpus of
roughly 101415 sentences from EU referendum articles, published in the year
leading up to the referendum vote (on the 23rd June 2016).

As a result of our experiments we were able to correctly classify articles
as being pro-leave or pro-remain with a highest F1 score of 0.70826. Further-
more, we were able to confirm perceived political bias in certain outlets, such
as The Daily Mail having a pro-leave preference, or The Guardian having a
pro-remain bias.

Perhaps more controversially, all out of the 5 best performing models
predicted the BBC to have a slight bias towards a pro-leave philosophy, with
the Naive Bayes model going as far as to a predict a 0.6581 likelihood that
the EU referendum-relating articles from the neutral, publicly owned media
corporation had a pro-leave bias. However, many of the more complex RNN
based models gave less confident predictions, with most giving a bias score
in the range of 0.51 to 0.56.

Whilst all of the RNN-based models were able to correctly determine
political bias in many contexts, the training process of these models required
large amounts of regularisation. Many of the best performing models had

CHAPTER 6. CONCLUSIONS 73

high dropout rates of 0.9 to minimise the risk of overfitting. The lack of input
data being prone to overfitting also meant that many of the best performing
RNN-based models were very simple, favouring few layers, and small hidden
layer sizes.

This study sought to utilise more recent developments in machine learn-
ing, to pursue whether this would be applicable in the domain of political
bias in long-form media text, where few studies have been done in this area
previously. However, this study proved that working over a smaller dataset
(only 101415 sentences), more simple methods such as the Naive Bayes still
are an effective means to perform document classification. The Naive Bayes
model created to serve as a comparison point to the more complex RNN
architectures actually ended up getting a higher F1 score than most RNN
models, and also provided the most consistent predicting of sentence bias,
compared to the generated RNN models. In addition to this, the Naive
Bayes model took only a fraction of the time taken to train, compared to
the RNN model training times. Due to these reasons, it would be advised to
continue pursuing more simple methods of determining political bias in long
form media, due to the lack of labelled data.

6.1 Future Work

For this thesis we primarily focused on specific architectures, for both creating
word embeddings and the classification tasks. For each of these tasks there
are multiple alternative approaches to solving these problems.

More recently, there have been developments in creating word representa-
tions based on subsets of words, rather than tokenising entire words directly.
One such example is ELMo [5] which aims to model complex characteristics
of word use, by utilising bidirectional language models. Another example is
BERT [16], which also uses bidirectional transformers to be able to create
deep representations of terms. Both of these come with pretrained mod-
els which could be used in this context, to compare further how effectively
transfer learning can be utilised within this problem space.

Furthermore, we make an acceptance in this paper that a certain level of
generalising is done in this study, with respect to how we work out our ground
truths. Whilst the endorsements that the newspapers provide to a certain
philosophy surrounding evens such as the EU referendum vote are explicit,
it can be argued that these endorsements are not represented in all articles.
It may be that certain journalists at each newspaper inadvertently endorse a
certain philosophy in the way that they frame the facts in their articles. We
could improve upon these flaws by utilising a more semi-supervised approach

CHAPTER 6. CONCLUSIONS 74

to calculating our ground truths, via clustering of articles that are worded
in a similar fashion and attributing a ground truth to these. In a similar
vein, it would could also be possible to give articles are score of how much
they lean towards a certain political philosophy (as a probability value on
a Bernoulli distribution). This way we would be able to more accurately
give confidence scores of a certain political bias, rather than approaching the
topic as a binary classification with a type of “all or nothing” result.

Finally, a convenient point of continuation for this project would be to
expand the research questions into that of a multi-class classification task. A
good example of this would be determining political bias over news articles
leading up to general elections in the UK. In this space, there are often a
number of different parties that receive endorsements from the traditional
newspapers. Since this is often a major point of news for the entire election
campaign, many newspaper outlets will provide their endorsements early on
in the election campaign process, giving more validity to applying the ground
truths in this way.

6.2 Closing Words

In this thesis we were successfully able to create a model that is able to
reliably give a correct political bias, when fed arbitrary sentences that are
relating to the 2016 UK-EU referendum vote. However, this is not without
flaws — it is possible that our model has instead learned the writing styles
of various outlets and is able to make predictions based on this, rather than
the reported content itself. We also showed that using simple methods such
as a Naive Bayes can produce similar results to a more complicated RNN,
while taking a fraction of the time to train. Furthermore, we were able to
successfully confirm that certain outlets with a perceived political bias in
a certain direction by the British public, do indeed write articles that are
classified as leaning in that direction by our predictor. We were also able to
show that supposedly unbiased outlets such as the BBC, do in fact posess a
slight bias towards a pro-leave philosophy, be it in writing style or perhaps
in genuine political motive.

In our study, we were able to reach the conclusion that many models
studied achieved similar levels of accuracy, with the main difference being in
small nuances, such as minor variations in number of layers, or size of hidden
layers. Taking all of these performance metrics into account, we were able to
show that the LSTM was able to perform best for this task. This is due to
the fact that the added complexity of the LSTM allows the model to learn
more complex relationships in data, while still being able to manage weights

CHAPTER 6. CONCLUSIONS 75

such that overfitting doesn’t ruin the resulting model. However, it would
be advised for the situation where this task is expanded upon, and used in
a more “real-world” context, simpler methods such as the Naive Bayes are
used as a base and expanded upon, rather than using complex deep RNN
archictectures from the outset.

Bibliography

[1] British broadcasting corporation section 4: Impartiality, 2019. [Online;
accessed 9-August-2019].

[2] Britons least likely of 22 nations to trust information on social media,
2019. [Online; accessed 14-August-2019].

[3] Circulation of newspapers in the united kingdom (uk) as of april 2019
(in 1,000 copies), 2019. [Online; accessed 9-August-2019].

[4] Edrm duke law: Coverage bias. https://www.edrm.net/glossary/

coverage-bias/, 2019. [Online; accessed 3-September-2019].

[5] Elmo – deep contextualized word representations. https://allennlp.

org/elmo, 2019. [Online; accessed 2-September-2019].

[6] Eventregistry. http://eventregistry.org, 2019. [Online; data collected
in 2019].

[7] Gensim. https://radimrehurek.com/gensim/, 2019. [Online; data col-
lected in 2019].

[8] How left or right-wing are the uk’s newspapers?, 2019. [Online; accessed
15-August-2019].

[9] Pytorch. https://pytorch.org/, 2019. [Online; data collected in 2019].

[10] Vote leave: The eu immigration system is immoral and un-
fair. http://www.voteleavetakecontrol.org/briefing_immigration.

html, 2019. [Online; accessed 3-September-2019].

[11] Word2vec, 2019. [Online; accessed 9-August-2019].

[12] Agarwal, A., Xie, B., Vovsha, I., Rambow, O., and Passon-
neau, R. Sentiment analysis of twitter data. In Proceedings of the
Workshop on Language in Social Media (LSM 2011) (2011), pp. 30–38.

76

https://www.edrm.net/glossary/coverage-bias/
https://www.edrm.net/glossary/coverage-bias/
https://allennlp.org/elmo
https://allennlp.org/elmo
http://eventregistry.org
https://radimrehurek.com/gensim/
https://pytorch.org/
http://www.voteleavetakecontrol.org/briefing_immigration.html
http://www.voteleavetakecontrol.org/briefing_immigration.html

BIBLIOGRAPHY 77

[13] Benesty, J., Chen, J., Huang, Y., and Cohen, I. Pearson cor-
relation coefficient. In Noise reduction in speech processing. Springer,
2009, pp. 1–4.

[14] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical
evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[15] Deacon, D., Wring, D., Harmer, E., Downey, J., and
Stanyer, J. Hard evidence: analysis shows extent of press bias to-
wards brexit.

[16] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 (2018).

[17] Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient meth-
ods for online learning and stochastic optimization. Journal of Machine
Learning Research 12, Jul (2011), 2121–2159.

[18] Entman, R. M. Framing bias: Media in the distribution of power.
Journal of communication 57, 1 (2007), 163–173.

[19] Graves, A., Mohamed, A., and Hinton, G. E. Speech recognition
with deep recurrent neural networks. CoRR abs/1303.5778 (2013).

[20] Gutmann, M. U., and Hyvärinen, A. Noise-contrastive estimation
of unnormalized statistical models, with applications to natural image
statistics. Journal of Machine Learning Research 13, Feb (2012), 307–
361.

[21] Hill, F., Reichart, R., and Korhonen, A. Simlex-999: Evaluating
semantic models with (genuine) similarity estimation. Computational
Linguistics 41, 4 (2015), 665–695.

[22] Hinton, G., Srivastava, N., and Swersky, K. Neural networks
for machine learning lecture 6a overview of mini-batch gradient descent.
Cited on 14, 8 (2012).

[23] Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.,
et al. Gradient flow in recurrent nets: the difficulty of learning long-
term dependencies, 2001.

[24] Hochreiter, S., and Schmidhuber, J. Long short-term memory.
Neural computation 9, 8 (1997), 1735–1780.

BIBLIOGRAPHY 78

[25] Iyyer, M., Enns, P., Boyd-Graber, J., and Resnik, P. Political
ideology detection using recursive neural networks. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers) (2014), pp. 1113–1122.

[26] Kingma, D. P., and Ba, J. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[27] Levy, D. A., Aslan, B., and Bironzo, D. Uk press coverage of the
eu referendum.

[28] Lewis, D. D., Yang, Y., Rose, T. G., and Li, F. Rcv1: A new
benchmark collection for text categorization research. Journal of ma-
chine learning research 5, Apr (2004), 361–397.

[29] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013).

[30] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing systems
(2013), pp. 3111–3119.

[31] Moore, M., and Ramsay, G. UK media coverage of the 2016 EU
Referendum campaign. King’s College London, 2017.

[32] Nesterov, Y. A method for unconstrained convex minimization prob-
lem with the rate of convergence o (1/kˆ 2). In Doklady AN USSR
(1983), vol. 269, pp. 543–547.

[33] Nunan D, Bankhead C, A. J. Catalogue of bias collaboration: Cov-
erage bias. http://www.catalogofbias.org/biases/selection-bias/,
2019. [Online; accessed 3-September-2019].

[34] Parliament, B. European union referendum act 2015. https://www.

legislation.gov.uk/ukpga/2015/36/contents/enacted, 2015. [Online;
accessed 24-August-2019].

[35] Rao, A., and Spasojevic, N. Actionable and political text classifica-
tion using word embeddings and lstm. arXiv preprint arXiv:1607.02501
(2016).

http://www.catalogofbias.org/biases/selection-bias/
https://www.legislation.gov.uk/ukpga/2015/36/contents/enacted
https://www.legislation.gov.uk/ukpga/2015/36/contents/enacted

BIBLIOGRAPHY 79

[36] Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. Learn-
ing representations by back-propagating errors. Cognitive modeling 5, 3
(1988), 1.

[37] Saez-Trumper, D., Castillo, C., and Lalmas, M. Social media
news communities: gatekeeping, coverage, and statement bias. In Pro-
ceedings of the 22nd ACM international conference on Information &
Knowledge Management (2013), ACM, pp. 1679–1684.

[38] Scammell, M., and Harrop, M. The press: Still for labour despite
blair. The British general election of (2005), 119–145.

[39] Schuster, M., and Paliwal, K. K. Bidirectional recurrent neural
networks. IEEE Transactions on Signal Processing 45, 11 (1997), 2673–
2681.

[40] Shen, L., and Zhang, J. Empirical evaluation of rnn architectures
on sentence classification task. arXiv preprint arXiv:1609.09171 (2016).

[41] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent neural
networks from overfitting. The journal of machine learning research 15,
1 (2014), 1929–1958.

[42] Wanta, W., Golan, G., and Lee, C. Agenda setting and interna-
tional news: Media influence on public perceptions of foreign nations.
Journalism & Mass Communication Quarterly 81, 2 (2004), 364–377.

[43] Wikipedia contributors. 2016 united kingdom european
union membership referendum — Wikipedia, the free encyclope-
dia. https://en.wikipedia.org/w/index.php?title=2016_United_

Kingdom_European_Union_membership_referendum&oldid=912249913,
2019. [Online; accessed 24-August-2019].

[44] Wikipedia contributors. Endorsements in the 2010 united
kingdom general election — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Endorsements_in_

the_2010_United_Kingdom_general_election&oldid=909888211, 2019.
[Online; accessed 14-August-2019].

[45] Wikipedia contributors. Endorsements in the 2015 united
kingdom general election — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Endorsements_in_

https://en.wikipedia.org/w/index.php?title=2016_United_Kingdom_European_Union_membership_referendum&oldid=912249913
https://en.wikipedia.org/w/index.php?title=2016_United_Kingdom_European_Union_membership_referendum&oldid=912249913
https://en.wikipedia.org/w/index.php?title=Endorsements_in_the_2010_United_Kingdom_general_election&oldid=909888211
https://en.wikipedia.org/w/index.php?title=Endorsements_in_the_2010_United_Kingdom_general_election&oldid=909888211
https://en.wikipedia.org/w/index.php?title=Endorsements_in_the_2015_United_Kingdom_general_election&oldid=909888618

BIBLIOGRAPHY 80

the_2015_United_Kingdom_general_election&oldid=909888618, 2019.
[Online; accessed 14-August-2019].

[46] Wikipedia contributors. Endorsements in the 2017 united
kingdom general election — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=Endorsements_in_

the_2017_United_Kingdom_general_election&oldid=909889554, 2019.
[Online; accessed 14-August-2019].

[47] Zeiler, M. D. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

[48] Zhitomirsky-Geffet, M., David, E., Koppel, M., and Uzan,
H. Utilizing overtly political texts for fully automatic evaluation of
political leaning of online news websites. Online Information Review
40, 3 (2016), 362–379.

[49] Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., and Xu, B.
Text classification improved by integrating bidirectional lstm with two-
dimensional max pooling. arXiv preprint arXiv:1611.06639 (2016).

https://en.wikipedia.org/w/index.php?title=Endorsements_in_the_2015_United_Kingdom_general_election&oldid=909888618
https://en.wikipedia.org/w/index.php?title=Endorsements_in_the_2015_United_Kingdom_general_election&oldid=909888618
https://en.wikipedia.org/w/index.php?title=Endorsements_in_the_2017_United_Kingdom_general_election&oldid=909889554
https://en.wikipedia.org/w/index.php?title=Endorsements_in_the_2017_United_Kingdom_general_election&oldid=909889554

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 A Marriage of Media Bias and Machine Learning
	1.2 Research Questions
	1.3 Structure of the Thesis
	1.3.1 Background
	1.3.1.1 Political Bias Background
	1.3.1.2 Sequence Classification Background

	1.3.2 Methods
	1.3.3 Environment & Implementation
	1.3.4 Evaluation & Discussion
	1.3.5 Conclusion

	2 Background
	2.1 Background of Political Bias in British Media
	2.1.1 Media in the United Kingdom
	2.1.1.1 The BBC

	2.1.2 Types of Bias
	2.1.3 The 2016 European Union Referendum

	2.2 Background of Corpus Classification
	2.2.1 Naive Bayes
	2.2.2 Multi-layer Perceptron
	2.2.3 Activation Functions
	2.2.4 Training
	2.2.4.1 Loss functions
	2.2.4.2 Optimisation
	2.2.4.3 Regularisation: Dropout

	2.2.5 Recurrent Neural Networks
	2.2.5.1 Backpropagation through time
	2.2.5.2 The Vanishing & Exploding Gradients Problem
	2.2.5.3 GRU
	2.2.5.4 LSTM
	2.2.5.5 Stacked Recurrent Neural Networks
	2.2.5.6 Bidirectional Recurrent Neural Networks

	2.3 Word Embeddings
	2.3.1 Word2Vec: Skip-Gram
	2.3.2 Word2Vec: Continuous Bag-of-Words

	3 Methods
	3.1 Word Embeddings
	3.1.1 Evaluating Embedding Quality

	3.2 Proposed Classification Model Architecture
	3.2.1 GRU & LSTM
	3.2.2 Loss Calculations

	3.3 Performance Metrics
	3.3.1 Comparison to Naive Bayes

	4 Environment & Implementation
	4.1 Data collection
	4.1.1 Tools Used
	4.1.2 Flaws & Assumptions Surrounding Data

	4.2 Data processing

	5 Evaluation & Discussion
	5.1 Results
	5.1.1 Word Embeddings
	5.1.2 Classification Model
	5.1.2.1 Experimentation process
	5.1.2.2 Results

	5.2 Analysis
	5.2.1 Simpler RNN Architectures Are Favoured
	5.2.2 Potential Missed Opportunities
	5.2.3 Flaws in Results

	5.3 Revisiting Research Questions
	5.3.1 Predicting Political Bias in Print Media
	5.3.2 Predicting Political Bias in Unbiased Media
	5.3.3 The Best Performing Model for Determining Political Bias

	6 Conclusions
	6.1 Future Work
	6.2 Closing Words

